The Journal of the Institute of Internet, Broadcasting and Communication
/
v.18
no.6
/
pp.151-156
/
2018
Because of its large differences in writing style, context-independency and high recognition accuracy requirement, free handwritten digital identification is still a very difficult problem. Analyzing the characteristic of handwritten digits, this paper proposes a new handwritten digital identification method based on combining structural features. Given a handwritten digit, a variety of structural features of the digit including end points, bifurcation points, horizontal lines and so on are identified automatically and robustly by a proposed extended structural features identification algorithm and a decision tree based on those structural features are constructed to support automatic recognition of the handwritten digit. Experimental result demonstrates that the proposed method is superior to other general methods in recognition rate and robustness.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.24
no.11
/
pp.30-41
/
2010
In this study we propose a new texture feature extraction method based on an estimation of the brightness and structural uniformity of CT images representing the important characteristics for emphysema recognition. The Center-Symmetric Local Binary Pattern (CS-LBP) is first used to combine gray level in order to describe the brightness uniformity characteristics of the CT image. Then the gradient orientation difference is proposed to generate another CS-LBP code combining with gray level to represent the structural uniformity characteristics of the CT image. The usage of the gray level, CS-LBP and gradient orientation differences enables the proposed method to extract rich and distinctive information from the CT images in multiple directions. Experimental results showed that the performance of the proposed method is more stable with respect to sensitivity and specificity when compared with the SGLDM, GLRLM and GLDM. The proposed method outperformed these three conventional methods (SGLDM, GLRLM, and GLDM) 7.85[%], 22.87[%], and 16.67[%] respectively, according to the diagnosis of average accuracy, demonstrated by the Receiver Operating Characteristic (ROC) curves.
For a systematic study on wind-induced vibration characteristics of large hyperbolic cooling towers with different feature sizes, the pressure measurement tests are finished on the rigid body models of three representative cooling towers with the height of 155 m, 177 m and 215 m respectively. Combining the refined frequency-domain algorithm of wind-induced responses, the wind-induced average response, resonant response, background response, coupling response and wind vibration coefficients of large cooling towers with different feature sizes are obtained. Based on the calculating results, the parametric analysis on wind-induced vibration of cooling towers is carried out, e.g. the feature sizes, damping ratio and the interference effect of surrounding buildings. The discussion shows that the increase of feature sizes makes wind-induced average response and fluctuating response larger correspondingly, and the proportion of resonant response also gradually increased, but it has little effect on the wind vibration coefficient. The increase of damping ratio makes resonant response and the wind vibration coefficient decreases obviously, which brings about no effect on average response and background response. The interference effect of surrounding buildings makes the fluctuating response and wind vibration coefficient increased significantly, furthermore, the increase ranges of resonant response is greater than background response.
Accurately predicting the failure modes of reinforced concrete (RC) columns is essential for structural design and assessment. In this study, the challenges of imbalanced datasets and complex feature selection in machine learning (ML) methods were addressed through an optimized ML approach. By combining feature selection and oversampling techniques, the prediction of seismic failure modes in rectangular RC columns was improved. Two feature selection methods were used to identify six input parameters. To tackle class imbalance, the Borderline-SMOTE1 algorithm was employed, enhancing the learning capabilities of the models for minority classes. Eight ML algorithms were trained and fine-tuned using k-fold shuffle split cross-validation and grid search. The results showed that the artificial neural network model achieved 96.77% accuracy, while k-nearest neighbor, support vector machine, and random forest models each achieved 95.16% accuracy. The balanced dataset led to significant improvements, particularly in predicting the flexure-shear failure mode, with accuracy increasing by 6%, recall by 8%, and F1 scores by 7%. The use of the Borderline-SMOTE1 algorithm significantly improved the recognition of samples at failure mode boundaries, enhancing the classification performance of models like k-nearest neighbor and decision tree, which are highly sensitive to data distribution and decision boundaries. This method effectively addressed class imbalance and selected relevant features without requiring complex simulations like traditional methods, proving applicable for discerning failure modes in various concrete members under seismic action.
For structural damage detection of shear buildings, this paper proposes a new concept using structural element mass-stiffness vector (SEMV) based on special mass and stiffness distribution characteristics. A corresponding damage identification method is developed combining the SEMV with the cross-model cross-mode (CMCM) model updating algorithm. For a shear building, a model is assumed at the beginning based on the building's distribution characteristics. The model is updated into two models corresponding to the healthy and damaged conditions, respectively, using the CMCM method according to the modal parameters of actual structure identified from the measured acceleration signals. Subsequently, the structural SEMV for each condition can be calculated from the updated model using the corresponding stiffness and mass correction factors, and then is utilized to form a new feature vector in which each element is calculated by dividing one element of SEMV in health condition by the corresponding element of SEMV in damage condition. Thus this vector can be viewed as a damage detection feature for its ability to identify the mass or stiffness variation between the healthy and damaged conditions. Finally, a numerical simulation and the laboratory experimental data from a test-bed structure at the Los Alamos National Laboratory were analyzed to verify the effectiveness and reliability of the proposed method. Both simulated and experimental results show that the proposed approach is able to detect the presence of structural mass and stiffness variation and to quantify the level of such changes.
In this study, we conducted the classification experiments with GMM (Gaussian Mixture Model) from combining the extracted features by using microphone, Gyro sensor and Acceleration sensor in 9 different environment types. Existing studies of Context Aware wanted to recognize the Environment situation mainly using the Environment sound data with microphone, but there was limitation of reflecting recognition owing to structural characteristics of Environment sound which are composed of various noises combination. Hence we proposed the additional application methods which added Gyro sensor and Acceleration sensor data in order to reflect recognition agent's movement feature. According to the experimental results, the method combining Acceleration sensor data with the data of existing Environment sound feature improves the recognition performance by more than 5%, when compared with existing methods of getting only Environment sound feature data from the Microphone.
An eigenspace projection clustering method is proposed for structural damage detection by combining projection algorithm and fuzzy clustering technique. The integrated procedure includes data selection, data normalization, projection, damage feature extraction, and clustering algorithm to structural damage assessment. The frequency response functions (FRFs) of the healthy and the damaged structure are used as initial data, median values of the projections are considered as damage features, and the fuzzy c-means (FCM) algorithm are used to categorize these features. The performance of the proposed method has been validated using a three-story frame structure built and tested by Los Alamos National Laboratory, USA. Two projection algorithms, namely principal component analysis (PCA) and kernel principal component analysis (KPCA), are compared for better extraction of damage features, further six kinds of distances adopted in FCM process are studied and discussed. The illustrated results reveal that the distance selection depends on the distribution of features. For the optimal choice of projections, it is recommended that the Cosine distance is used for the PCA while the Seuclidean distance and the Cityblock distance suitably used for the KPCA. The PCA method is recommended when a large amount of data need to be processed due to its higher correct decisions and less computational costs.
A steel pallet to carry lighter logistic articles is developed based on the DFSS(design for Six Sigma) methodology. Combining the conventional DFSS(Design For Six Sigma) methodology with that of VE(Value Engineering) is the novel feature of this paper to achieve maximum cost reduction. In this paper, systematical steps to achieve the required structural spec's are presented by conventional DMEDI(Define-Measure-Explore-Develop-Implement) process. To imply the target costing, evaluation of functions consisting of the pallet has been performed by value methodology. Then best design concept is selected in the Explore step, following structural optimization utilizing FEM. Finally the performance of prototype is investigated by pilot test in the Implement step. The developed steel pallet is being commercialized in the fields of automated ware house.
In this study, the reliability of nonlinear ultrasonic modulation based fatigue crack detection is improved using a feature-level data fusion approach. When two ultrasonic inputs at two distinct frequencies are applied to a specimen with a fatigue crack, modulation components at the summation and difference of these two input frequencies appear. First, the spectral amplitudes of the modulation components and their spectral correlations are defined as individual features. Then, a 2D feature space is constructed by combining these two features, and the presence of a fatigue crack is identified in the feature space. The effectiveness of the proposed fatigue crack detection technique is experimentally validated through cyclic loading tests of aluminum plates, full-scale steel girders and a rotating shaft component. Subsequently, the improved reliability of the proposed technique is quantitatively investigated using receiver operating characteristic analysis. The uniqueness of this study lies in (1) improvement of nonlinear ultrasonic modulation based fatigue crack detection reliability using feature-level data fusion, (2) reference-free fatigue crack diagnosis without using the baseline data obtained from the intact condition of the structure, (3) application to full-scale steel girders and shaft component, and (4) quantitative investigation of the improved reliability using receiver operating characteristic analysis.
The majority of dyes belong to the chromophoric class known as donor-acceptor systems. The essential structural feature of such systems is the presence of one or more electron donating groups conjugated to one or more electron withdrawing groups via an unsaturated bridge. The pyrazolin-5-one system is an effective electron acceptor residue, and can also act as a weak electron donor. In our experiments, the various symmetrical and unsymmetrical H-chromophores were synthesized in the indoxyl, imidazo[1,2-a]pyridin-2-one, pyrazolin-5-one, and pyridin-2,6-dione residues, resulting in cross-conjugated donor-acceptor systems. And the visible light absorption was then associated with the migration of electron density from the donor region of the molecule to the acceptor region. Also, it was useful to prepare related non-cross-conjugated donor acceptor chromophores by combining these residues with other electron donor or acceptor moieties. For convenience such chromophores are referred to as merocyanines.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.