• Title/Summary/Keyword: combined sewer system

Search Result 93, Processing Time 0.029 seconds

Effect for CSOs Storage Construction - Analysis of Storm Water Run-off Characteristics in combined sewer system (합류식 하수관거 월류수 저장 시설에 대한 효과 - 강우시 합류식 하수관거에서의 오염물질 유출특성 분석)

  • Park, Jin-Kyu;Lee, Nam-Hoon;Kim, Hae-Ryong;Lee, Woong;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.949-957
    • /
    • 2011
  • This aim of study was to investigate the characteristics of discharge of pollutants as well as the correlation between flow rate and water quality constituents in a combined sewer system according to the characteristics of rainfall. For the loading rates for each pollutant, the median concentrations of all pollutants except T-N was increased when a CSO took place. The loading rates of BOD, COD, SS, T-N, T-P, Cu and Zn at the CSOs were 328-1255, 25-129, 83-2009, 4-12, 14-51, 5-11 and 5-13 times higher than the DWF (Dry Whether Flow), respectively. Especially, SS loading rate was found to be highest in all pollutants. On the other hand, the range of the first flush coefficient, b for water quality constituents such as BOD, COD, SS, T-N, T-P, Cu and Zn were 0.537-0.878, 0.589-0.888, 0.516-1.062, 0.852-1.031, 0.649-0.954, 0.975-1.015 and 0.900-1.114, respectively. In term of correlation between flow rate and pollutant concentrations, SS concentration was highly correlated to flow rate. However, there was an inverse correlation between EC (Electrical Conductivity) and flow rate because of the high dilution of flow rate. In case of correlation between pollutants, there was a high correlation between SS and T-P.

A Study of Optimal-CSOs by Continuous Rainfall/Runoff Simulation Techniques (연속 강우-유출 모의기법을 이용한 최적 CSOs 산정에 관한 연구)

  • Jo, Deok Jun;Kim, Myoung Su;Lee, Jung Ho;Kim, Joong Hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1068-1074
    • /
    • 2006
  • For receiving water quality protection a control systems of urban drainage for CSOs reduction is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as storm-water detention storage is highly dependant on the temporal variability of storage capacity available as well as the infiltration capacity of soil and recovery of depression storage. For the continuous long-term analysis of urban drainage system this study used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model has evolved that offers much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. Runoff characteristics manifested the unique characteristics of the subject area with the infiltration capacity of soil and recovery of depression storage and was examined appropriately by sensitivity analysis. This study presented the average annual CSOs, number of CSOs and event mean CSOs for the decision of storage volume.

Rainfall Effects on Discharged Pollution Load in Unit Watershed Area for the Management of TMDLs (수질오염총량관리 배출부하량에 대한 강우영향 분석연구)

  • Park, Jun Dae;Oh, Seung Young
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.648-653
    • /
    • 2010
  • Discharged pollution load for the management of Total Maximum Daily Loads (TMDLs) is calculated on the basis of rainfall data for reference year. Rainfall has an influence on discharged pollution load in unit watershed with combined sewer system. This study reviewed the status of discharged pollution load and rainfall conditions. We also investigated rainfall effects on discharged pollution load by analyzing change of the load in accordance with increase of rainfall. The change ratio of discharged pollution load was 18.6% while inflow load only 5.8% for 5 years from 2004 to 2008 in Daejeon district. The greatest rainfall and rain days were over 2 times than the least during the period. This change in rainfall could have great effect on discharged pollution load. The analysis showed that discharged pollution load increased 2.1 times in case rainfall increased 2 times and 1.2 times in case rain days increased 2 times. Rainfall effects, therefore, should be considered to make resonable evaluation of discharged pollution load in the assessment of annual performances.

Change in Influent Concentration of Domestic Wastewater from Separated Sewer and Biological Nitrogen and Phosphorus Removal of a Full Scale Air-vent SBR (분류식 하수관거로의 전환시 유입하수의 성상 변화 및 선회와류식 SBR공법의 처리 특성)

  • Lee, Jang-Hee;Kang, Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.63-70
    • /
    • 2012
  • This study was carried out to investigate change in influent concentration of domestic wastewater flowed from a newly constructed separate sewer system (SSS) and biological nutrients removal efficiency of a full scale Air-vent sequential batch reactor (SBR, $600m^3/d$). The average concentration of $BOD_5$, SS, T-N and T-P from SSS were 246.5 mg/L, 231.6 mg/L, 42.974 mg/L, 5.360 mg/L, respectively which corresponds to 2.2times, 1.2times, 1.8times and 2.1times higher than those from the conventional combined sewer system (CSS). The removal efficiency of $BOD_5$, SS, T-N, and T-P for the Air-vent SBR operated with influent from SSS averaged 99.1%, 99.0%, 91.2%, and 93.5%, respectively. Especially the respective nitrogen and phosphorus removal was 15% greater than that of the SBR operated with influent from CSS. Simultaneous nitrification and denitrification (SND) was observed in an aerobic reactor(II) as a result of DO concentration gradient developed along the depth by the Air-vent system. In order to achieve T-N removal greater than 90%, the C/N ratio should be over 6.0 and the difference between $BOD_5$ loading and nitrogen loading rate be over 100 kg/day (0.130 kg $T-N/m^3{\cdot}d$). Even with high influent T-P concentration of 5.360 mg/L from SSS (compared with 2.465 mg/L from CSS) T-P removal achieved 93.5% which was 15.5% higher than that of the SBR with influent from CSS. This is probably due to high influent $BOD_5$ concentration from SSS that could provide soluble carbon source to release phosphorus at anaerobic condition. In order to achieve T-P removal greater than 90%, the difference between $BOD_5$ loading and phosphorus loading rate should be over 100 kg /day (0.130 kg $T-N/m^3{\cdot}d$).

Analysis of the Effect of Bio-Retention Cells to Improve Water Cycle and Water Quality in Urban Streams (도시하천의 물순환 및 수질 개선을 위한 생태저류지의 효과분석)

  • Kim, Kyungmin;Choi, Jeonghyeon;Kim, Suhyeon;Kang, Lim-Seok;Shin, Hyunsuk;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.21 no.3
    • /
    • pp.224-235
    • /
    • 2019
  • Rapid urbanization poses three major problems in urban streams. The first problem is the reduction of soil wetting from rainfall as the impervious area increases. Decrease in soil wetting causes serious distortion in the water cycle of urban streams. The second problem is the increase of non-point sources pollutants by urban land use, and the third problem is the combined sewer overflows in the old city center. Increased non-point sources pollutants and combined sewer overflows are associated with water cycle distortion, which increases water pollution in urban streams. In this study, EPA SWMM was constructed for the Busan Oncheon-stream watershed in order to suggest solutions for these three problems, and the bio-retention cells installation project was planned by benchmarking the actual projects in New York City. Water cycle improvement and reduction of non-point sources pollutants and combined sewer overflows for each project scenario were analyzed together with required budgets.

Characteristics and Combined Sewer Overflows (합류식 하수관거의 유출 특성 분석 조사)

  • An, Ki-Sun;Jang, Sung-Ryong;Kwon, Young-Ho
    • Journal of Environmental Science International
    • /
    • v.19 no.6
    • /
    • pp.747-753
    • /
    • 2010
  • It follows in quality and sewage exclusion method of the investigation objective sector and the Combined Sewer Overflows which is suitable in regional characteristics and the confluence area against the rainfall initially a flow and the medulla and measurement - it analyzes the initial rainfall outflow possibility control plan which is suitable in the domestic actual condition and it proposes the monitor ring plan for the long-term flow and pollution load data accumulation. From the research which it sees the Infiltration water/Influent water and CSOs investigation it passes by the phase of hazard chain and Namwon right time 4 it does not hold reverse under selecting, Measurement it used the hazard automatic flow joint seal Sigma 910 machine and in case 15 minute interval of the I/I, it measured a flow at case 5, 15 minute standing of the CSOs. The water quality investigation for the water leakage investigation of the I/I and the sewage from the point which is identical with flow measurement during on-the-spot inspection duration against 6 items which include the BOD sampling and an analysis, when the rainfall analysis for CSOs fundamental investigation analyzed against 18 items which include the BOD sampling. Consequently, for the optimum interpretation invasion water / inflow water of the this investigation area day average the lowest flow - water quality assessment veterinarian optimum interpretation hazard average per day - lowest flow - it averages a medulla evaluation law department one lowest flow evaluation technique and it selects, it presentation collectively from here it gets, position result with base flow analysis of invasion water / inflow water.

Analysis on Load of Non-point Source from Sewage Treatment Districts in Nakdong River (낙동강 유역 내 하수처리구역의 비점 배출 부하량 분석)

  • Shin, Hyun Suk;Kim, Mi Eun;Kim, Jae Moon;Jang, Jong Kyung
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.9
    • /
    • pp.695-709
    • /
    • 2015
  • The inflow of nonpoint pollution sources due to sustainable development and urbanization is gradually increasing and causes a diversity of water pollution. There are lots of difficulties to find a solution as the problems related to variation of hydrological and natural phenomenon. A differentiated method to estimate the nonpoint pollution sources has been proposed using rainfall and characteristics of urbanization and observed data from sewage treatment districts in the study. The types of nonpoint pollution sources on an assumption of combined sewer system have been classified as three types which are inflow of rainfall, bypass of sewage treatments, and combined sewer overflows from a river. Three types for estimation of nonpoint pollution sources applied more accurately to generate a amount of nonpoint pollution loads. This study is expecting a wide application for effective water resource management on TMDL (total maximum delivery load) unit watershed and sewage treatment districts.

Evaluation of Pilot scale Coagulation system Design for CSOs treatment (CSOs 처리를 위한 실증규모 응집침전시스템의 설계평가)

  • Lee, Seung-Chul;Ha, Sung-Ryong
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • A pilot scale coagulation system, which has a function of physicochemical treatment, was developed to treat Combined sewer overflows(CSOs). This coagulation system requires evaluation of optimum design factors whether it has reflected those of lab scale system, moreover, the pilot scale system can be evaluated differently according to the characteristics of influent CSOs even though it has reflected lab scale's design factors. We conducted an experiment using lab scale system that could treat $1m^3$ of CSOs in a day, and also pilot-scale system with $100m^3/day$ CSOs flowed into the Cheongju sewage treatment plant. Therefore the aim of this study is to evaluate a hydraulic similarity between the design factors of pilot scale and those of lab scale coagulation system, and to evaluate feasibility of the coagulation system for the CSOs treatment with optimum operation conditions. From the result of pilot-test, we drew the optimum operation factors of in line mixer and flocculator having similarities with those of lab scale system as well as the optimum coagulant dose. Finally we confirmed that the coagulation system has feasibility to treat the CSOs with high removal efficiency.

Development of Estimation Equations for Solid Deposition in Sewer Systems (관거 내 고형물 퇴적량 산정식 개발)

  • Lee, Jae-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.5
    • /
    • pp.409-418
    • /
    • 2007
  • Combined sewer solid deposition during dry weather periods and their resuspension during wet weather periods has long been recognized as a major contributor to the first-flush phenomenon. Also, these deposition of sewer solids results in a loss of flow capacity that may restrict flow and cause a local flooding at urban area. In order to solve these problems, measurement of solid deposition for a given sewer system for extended period is needed but this task is very difficult and extremely expensive. This paper presents the development and applicability of estimation equations for solid deposition in sewer systems based on the solid deposition estimated using MOUSE model. As results, the comparison between estimated and measured solid deposition is difficult due to the absent of measured data, but the estimated values using developed equations show applicability compared with the results of MOUSE model and the estimation equations developed by the EPA.

Development of a Combined Model for Flood Inundation Simulation (홍수범람모의를 위한 내외수 연계모형 개발)

  • Yu, Jae-Hong;Kim, Hyung-Jun;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.1-8
    • /
    • 2005
  • In this study, a numerical model combined by a river model and an inland model developed to simulated a flood event. The river model describing an inundation in a river solves the two-dimensional Saint Venant equations with a finite difference method. The inland model based on the ILLUDAS describes the conveyance capacity of a storm sewer system. The combined model is applied to a real situation. The model simulates reasonably the real flood event occurred in a river and inland simultaneously.