• Title/Summary/Keyword: combined polymers

Search Result 66, Processing Time 0.038 seconds

Liquid Crystalline Aromatic Polyesters (액정성 전방향족 폴리에스테르)

  • Kwon Young-Wan;Choi Dong Hoon;Jin Jung-Il
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.523-535
    • /
    • 2005
  • Linear aromatic polyesters are representative examples of thermotropic liquid crystalline polymers (TLCPs), which have been the subject of many researches. This article reviews the structure-LC properties relationship in wholly aromatic CLCPs mostly based on the results obtained for the past quarter of a century. Especially, this review deals with the structural details of aromatic polyester TLCPs that influence the liquid crystalline and thermal properties. In the last part of this article the liquid crystalline properties of combined type and hyperbranched polyester also are discussed. Introduction to various synthetic methods are included in the last section.

Addition of Coagulants for Phosphorus Removal from Combined Sewer Overflows (CSOs) (합류식 하수관거 월류수의 인제거를 위한 응집제 투여)

  • Son, Sang-Mi;Jutidamrongphan, Warangkana;Park, Ki-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.295-302
    • /
    • 2012
  • The coagulation of combined sewer overflows ($CSO_{s}$) was investigated by jar-testing with several commercial coagulants. $CSO_{s}$ sample showed different characteristics of coagulation from secondary wastewater with three common coagulants, aluminum sulfate, ferric chloride and polyaluminum chloride (PACl). Jar-tests showed that relatively wide range of optimal SS and T-P removal yielded with alum and ferric chloride compared with cationic polymers, though efficient SS and T-P removal can be achieved with all three coagulants. The decrease of pH was caused by the increase in dosage of aluminum sulfate, ferric chloride and PACl as coagulants. The pH was changed from 7.0 to 4.7 with the dosages of ferric chloride 25 mL/L. Aluminum sulfate revealed pH of 5.0 and PACl was highest pH of 5.4 after dosing of coagulants. The optimal pH to treat $CSO_{s}$ with aluminum sulfate were 6-6.5; with PACl 6-7, and with ferric chloride higher than 7.

Examining the performance of PAI/ZnO synthesized with diamine and nano particles

  • Jianwei Shi;Xiaoxu Teng
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.201-210
    • /
    • 2023
  • A ZnO/poly (amide-imide) hybrid nanocomposite film with different weight percentages of Zinc oxide (ZnO) nanoparticles is synthesized and characterized in this paper. A two-step reaction successfully synthesized a new kind of heteroaromatic diamine with bulky pendant groups. In order to produce 3, 5-dinitro-3, 3-bis (4-(4-Nitrophenoxy) phenyl) -2- benzofuran-1-one, 3, 3'-bis (4-hydroxyphenyl) benzofuran-1-one and 3'-bis (4-hydroxyphenyl) benzofuran-1-one were combined with 3'-bis (3-hydroxyphenyl) benzofuran-1-one. The obtained dinitro was then reduced by zinc dust and hydrochloric acid. The reaction of 4, 4* carbonyl diphthalic anhydride with amino acid L-alanine in acetic acid leads to the production of very high yields of chiral diacid monomer. As a result of the direct polymerization of these monomers, new optically active polymers were formed (amide-imide). In order to synthesize poly (amide-imide)/ZnO nanocomposites with different weight percentages (2, 4, 6, 8, and 10%), PAI and ZnO nanoparticles were combined using ultrasonication SEM, Fourier transform infrared spectroscopy, X-ray diffraction and thermal gravimetry were used to characterize the PAI films.

Synthesis of Ultra-long Hollow Chalcogenide Nanofibers

  • Jwa, Yong-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.3.1-3.1
    • /
    • 2011
  • Nanoengineered materials with advanced architectures are critical building blocks to modulate conventional material properties or amplify interface behavior for enhanced device performance. While several techniques exist for creating one dimensional heterostructures, electrospinning has emerged as a versatile, scalable, and cost-effective method to synthesize ultra-long nanofibers with controlled diameter (a few nanometres to several micrometres) and composition. In addition, different morphologies (e.g., nano-webs, beaded or smooth cylindrical fibers, and nanoribbons) and structures (e.g., core-.shell, hollow, branched, helical and porous structures) can be readily obtained by controlling different processing parameters. Although various nanofibers including polymers, carbon, ceramics and metals have been synthesized using direct electrospinning or through post-spinning processes, limited works were reported on the compound semiconducting nanofibers because of incompatibility of precursors. In this work, we combined electrospinning and galvanic displacement reaction to demonstrate cost-effective high throughput fabrication of ultra-long hollow semiconducting chalcogen and chalcogenide nanofibers. This procedure exploits electrospinning to fabricate ultra-long sacrificial nanofibers with controlled dimensions, morphology, and crystal structures, providing a large material database to tune electrode potentials, thereby imparting control over the composition and shape of the nanostructures that evolved during galvanic displacement reaction.

  • PDF

Hybrid Effects of Carbon-Glass FRP Sheets in Combination with or without Concrete Beams

  • Kang, Thomas H.K.;Kim, Woosuk;Ha, Sang-Su;Choi, Dong-Uk
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.1
    • /
    • pp.27-41
    • /
    • 2014
  • The use of carbon fibers (CF) and glass fibers (GF) were combined to strengthen concrete flexural members. In this study, data of tensile tests of 94 hybrid carbon-glass FRP sheets and 47 carbon and GF rovings or sheets were thoroughly investigated in terms of tensile behavior. Based on comparisons between the rule of mixtures and test data, positive hybrid effects were identified for various (GF/CF) ratios. Unlike the rule of mixtures, the hybrid sheets with relatively low (GF/CF) ratios also produced pseudo-ductility. From the calibrated results obtained from experiments, a new analytical model for the stress-strain relationship of hybrid FRP sheets was proposed. Finally, the hybrid effects were verified by structural tests of concrete members strengthened with hybrid FRP sheets and either carbon or glass FRP sheets.

Ordered Polymer Nanostructures Induced by Controlled Dewetting

  • Park, Cheol-Min;Yoon, Bo-Kyung;Kim, Tae-Hee
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.188-188
    • /
    • 2006
  • We demonstrate two very simple and fast routes to fabricating ordered micro/nanopatterns of polymers over large areas on various substrates using controlled dewetting. The first method is based on utilizing microimprinting to induce the local thickness variation of an initially inverted bilayer which allows the controlled dewetting and partial layer inversion upon subsequent thermal annealing. In the second method, the self assembly of block copolymer was controlled on a chemically micropatterned surface produced by microcontact printing, being combined with its solvent vapor treatment. The kinetically driven, non-lithographical nanopattern structures were easily fabricated over large area by these approaches.

  • PDF

Polarity Probing Two-Photon Fluorophores Based on [2.2]Paracyclophane

  • Woo, Han-Young;Korystov, Dmitry;Jin, Young-Eup;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2253-2260
    • /
    • 2007
  • A series of tetra donor substituted [2.2]paracyclophane-based two-photon absorption (TPA) fluorophores were synthesized in neutral and cationic forms. The imaging activity of overall set of fluorophores was studied by the two-photon induced fluorescence (TPIF) method in a range of solvents. We also measured a clear progression toward a longer photoluminescence lifetime with increasing solvent polarity (intrinsic photoluminescence lifetime, τi: ~2 ns in toluene → 12-16 ns in water). The paracyclophane fluorophores with this unique property can be utilized as an optical polarity probe for the biomolecular substrates. The combined measurement of the two-photon fluorescence microscopy (TPM) cell image and TPIF lifetime can give us a better understanding of the biological processes and local environments in the cells.

Copying and Manipulating Nature: Innovation for Textile Materials

  • Rossbach, Volker;Patanathabutr, Pajaera;Wichitwechkarn, Jesdawan
    • Fibers and Polymers
    • /
    • v.4 no.1
    • /
    • pp.8-14
    • /
    • 2003
  • This paper considers the potential impact of biological approaches such as bio-copying (biomimetics) and biomanipulating (e.g. genetic engineering) on future developments in the field of textiles and, in particular, fibres. If analytical tools for studying biological systems combined with those of materials science are further developed, and higher efficiency and reproducibility of genetic engineering technology can be achieved, the potential for the copying and manipulation of nature for textile innovations will be immense. The present state for both fields is described with examples such as touch and close fastener, structurally coloured fibres, the Lotus of lect (for bio-copying), as well as herbicide tolerant cotton, insecticide resistant cotton (Bt cotton), cotton polyester bicomponent fibres, genetically engineered silkworm and silk protein, and spider fibres. (for genetic engineering).

Formation of the Polycaprolactam between Layers of the [DEACOOH]-Montmorillonite Intercalations Complex and Its Characterization

  • Cho, Sung-Jun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.207-212
    • /
    • 2006
  • [ ${\varepsilon}-caprolactam$ ] was polymerized in the layers of the [DEACOOH]-Montmorillonite intercalations complex at high temperatures ranging from 250% to 260% formed from Na-Montmorillonite and 10-Carboxy-n-decyldimethylethylammonium bromide to achieve [DEACOOH]-Polycaprolactam-Montmorillonite, in which an inorganic polymer (montmorillonite) is chemically combined with an organic polymer (polycaprolactam). The results of X-ray and IR analyses for the samples obtained after polymerization showed that the polymerization reaction was successfully accomplished. For the purpose of studying the polymeric reaction product more precisely, the polymerized product was separated from the silicate layers and analyzed with an X-ray diffractometer and an IR-spectrometer. A comparison of the results of the X-ray and IR analyses of the separated polymer and the polymer that was synthesized by the reaction of ${\varepsilon}-caprolactam$ solely with the organic cation without montmorillonite showed that the obtained both polymers are identical compounds.

Comparison of the Properties of Molecular Composites Blends of Poly(vinyl alcohol)/Conducting Polymer (폴리비닐알콜/전도성고분자 분자복합체와 블렌드의 물성 비교)

  • Kwon, Ji-Yun;Kim, Young-Hee;Kim, Han-Do
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.29-32
    • /
    • 2001
  • Conductive polymers(CPs) are a relatively new class of organic materials displaying as their foremost property a high conductivity combined with very light weight, flexibility and reasonably facile processability[1]. Due to their high conductivity/weight ratio, they have recently evinced much interest in potential application as EMI shielding screens, coatings or jackets for flexible conductors, rechargeable batteries and as possible substitutes for metallic conductors or semiconductors in wide variety of electrical devices[2]. (omitted)

  • PDF