• Title/Summary/Keyword: combined loading conditions

Search Result 135, Processing Time 0.032 seconds

Monitoring corrosion of reinforced concrete beams in a chloride containing environment under different loading levels

  • Wei, Aifang;Wang, Ying;Tan, Mike Y.J.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.253-267
    • /
    • 2015
  • Corrosion has significant adverse effects on the durability of reinforced concrete (RC) structures, especially those exposed to a marine environment and subjected to mechanical stress, such as bridges, jetties, piers and wharfs. Previous studies have been carried out to investigate the corrosion behaviour of steel rebar in various concrete structures, however, few studies have focused on the corrosion monitoring of RC structures that are subjected to both mechanical stress and environmental effects. This paper presents an exploratory study on the development of corrosion monitoring and detection techniques for RC structures under the combined effects of external loadings and corrosive media. Four RC beams were tested in 3% NaCl solutions under different levels of point loads. Corrosion processes occurring on steel bars under different loads and under alternative wetting - drying cycle conditions were monitored. Electrochemical and microscopic methods were utilised to measure corrosion potentials of steel bars; to monitor galvanic currents flowing between different steel bars in each beam; and to observe corrosion patterns, respectively. The results indicated that steel corrosion in RC beams was affected by local stress. The point load caused the increase of galvanic currents, corrosion rates and corrosion areas. Pitting corrosion was found to be the main form of corrosion on the surface of the steel bars for most of the beams, probably due to the local concentration of chloride ions. In addition, visual observation of the samples confirmed that the localities of corrosion were related to the locations of steel bars in beams. It was also demonstrated that electrochemical devices are useful for the detection of RC beam corrosion.

Analysis of Mechanical Properties of Wood Flours Composites to Improve the Strength of Truck Deck Floor Boards (트럭 Deck Floor Board의 강도향상을 위한 목분복합재의 기계적특성 분석)

  • Yun, Sung-Woo;Go, Sun-Ho;Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2019
  • The deck floor of a the cargo truck becomesis damaged and aged due to the continuous loading of the loading cargo and external environmental factors. Floor boards made of wood and metal are often used. In the case of wood, the cost is high due to the use of imported wood, and the strength is easily deterioratesd due to environmental factors. In the case of metal materials, the durability is higher than that of wood, but problems are raised due to the effect of major factors that hinder the weight reduction, and the effects of corrosion. In order to replace this stucturestructural design, this study proposed a wood fiber composite using natural raw materials. Woody composites are being used as environmentally and friendly exterior materials with the combined advantages of plastic, and wood,; low cost and low density. However, due to the nature of the woody composites, the properties are differentdiffer depending on the contents of the matrix, reinforcing agent, additives, compatibilizer, etc. In this study, we investigate these problems through analysis of the microstructure and mechanical properties according to proper content and injection molding conditions. As a result, it is considered that the wood deck composite can replaced the current Deck Floor Boardreplace current deck floor boards through continuous continued research and results of this study.

Stochastic fracture behavior analysis of infinite plates with a separate crack and a hole under tensile loading

  • Khubi Lal Khatri;Kanif Markad
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.99-117
    • /
    • 2023
  • The crack under the influence of the higher intensities of the stresses grows and the structure gets collapsed with the time when the crack length reaches to critical value. Therefore, the fracture behavior of a structure in terms of stress intensity factors (SIF) becomes important to determine the remaining fracture strength and capacity of material and structure for avoiding catastrophic failure, increasing safety and further improvement in the design. The robustness of the method has been demonstrated by comparing the numerical results with analytical and experimental results of some problems. XFEM is used to model cracks and holes in structures and predict their strength and reliability under service conditions. Further, XFEM is extended with a stochastic method for predicting the sensitivity in terms of output COVs and fracture strength in terms of mean values of stress intensity factors (SIFs) of a structure with discontinuities (cracks and holes) under tensile loading condition with input individual and combined randomness in different system parameters. In stochastic technique, the second order perturbation technique (SOPT) has been used for the predicting the fracture behavior of the structures. The stochastic/perturbation technique is also known as Taylor series expansion method and it provides the reliable results if the input randomness is less than twenty percentage. From the present numerical analysis it is observed that, the crack tip near to the hole is under the influence of the stress concentration and the variational effect of the input random parameters on the crack tip in terms of the SIFs are lesser so the COVs are the less sensitive. The COVs of mixed mode SIFs are the most sensitive for the crack angles (α=45° to 90°) for all the values of c1 and d1. The plate with the shorter distance between hole and crack is the most sensitive with all the crack angles but the crack tip which is much nearer to the hole has the highest sensitivity.

Torsional Behaviour of Concrete Filled Circular Steel Tube Column Considering Confinement Effect (구속효과를 고려한 콘크리트 충전 원형강관 기둥의 비틀림 거동)

  • Yun, Bok Hee;Lee, Eun Taik;Park, Ji Young;Jang, Kyong Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.529-541
    • /
    • 2004
  • Concrete filled steel tube structures were recently used in constructing high-rise buildings due to their effectiveness. Studies on concrete filled steel tubes have been focused on the experiments of uni-axial compression and bending and eccentric compression. There were also a few studies that investigated CFT member behavior under combined compression and torsion. The behavior of a circular CFT column under combined torsion and compression was theoretically investigated, considering the confinement of steel tubes on the concrete, the softening of the concrete, and the spiral effect, which were the dominant factors that influenced compression and torsion strength. The biaxial stress effects due to diagonal cracking were also taken into account. By applying those factors to compatibility and equilibrium conditions, the basic equation was derived, and the equation could be used to incorporate the torsional behavior of the entire loading history of the CFT member.

Measurement and Analysis for Positioning Control Characteristics using Encoder Signal of NC Machine Controller (공작기계용 NC제어기의 엔코더 신호를 이용한 위치제어 특성 측정 및 분석)

  • Kim Jong-Gil;Lee Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.311-317
    • /
    • 2005
  • NC controller parameters are fixed when the controller is combined with a machine. However, the characteristics of controller could be changed as it has being used by the machine or other environmental conditions. Ultimately, it results in tool positioning accuracy changing. The loading torque in servo motor also influences on the positioning accuracy. This study focus on a measuring and analysing method for verifying the angular positioning accuracy of NC servo motor. We used a high resolution A/D converter for acquiring analogue signal of rotary encoder in servo motor. Generating tool path by the combination of axial movements (X,Y,Z) is compared with the encoder signals with the servo motor torque. The current variation signal is also read from the servo motor power using a hall sensor and converted to the motor torque. The method of analysing proposed in this study will be used for determining the gains (tuning) of parameter in NC controller, when the controller is set up at a machine initially or the controller condition is changed during the work.

Life Evaluation of Gas Turbine Engine Disk based on Retirement for Cause Concept (Retirement For Cause 개념에 의한 가스터빈 디스크 수명의 평가)

  • Nam, Seung-Hun;Park, Jong-Hwa;Kim, Jong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.365-373
    • /
    • 2002
  • For gas turbine engines, the safe life methodology has historically been used fur fatigue life management of failure critical engine components. The safe retirement limit is necessarily determined by a conservative life evaluation procedure, thereby many components which have a long residual life are discarded. The objective of this study is to introduce the damage tolerant design concept into the life management for aircraft engine component instead of conservative fatigue life methodology which has been used for both design and maintenance. Crack growth data were collected on a nickel base superalloy which have been subjected to combined static and cyclic loading at elevated temperatures. Stress analysis fur turbine disk was carried out. The program for computing creep-fatigue crack growth was developed. The residual lifes of turbine disk component under various temperatures and conditions using creep-fatigue crack growth data were estimated. As the result of analysis, it was confirmed that retirement fur cause concept was applicable to the evaluation of residual life of retired turbine disk which had been designed based on the conventional fatigue life methodology.

Analytical Study on Behaviour of Plane Steel Frame with Semi-Rigid Beam-to-Column Connection (반강접 접합부를 갖는 평면 강골조의 거동에 관한 해석적 연구)

  • Kim, Jong Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.483-492
    • /
    • 2009
  • In this study, nonlinear analysis of steel plane frame was performed using the refined plastic hinge method of advanced analysis techniques. In deterioration of stiffness in plastic zone, influences by flexural bending, residual stress, geometrical non-linearity, and semi-rigid connection are considered. And also, further reduced tangent modulus was used for geometrical non-linearity, top and seat angle were chosen for semi-rigid connection. Furthermore, 3 parameter power model was used for moment-rotation behaviour of beam to column connection. The loading conditions are combined with axial and lateral force and the inverse triangle distribution of lateral and eight type of analytical models were used in analysis. The results of analyses were compared with semi-rigid and rigid connection on behaviour of numerical analysis models. And also, the behaviors of frame with changes of semi-rigidity were analyzed by using the results obtained from MIIDAS-GENw.

Material Parameters Identification of Adhesive in Layered Plates Using Moiré Interferomety and Optimization Technique (무아레 간섭계 측정과 최적화 기법을 이용한 적층판의 접착제 물성치 규명)

  • Joo, Jin-Won;Kim, Han-Jun;Lee, Woo-Hyuk;Kim, Jin-Young;Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1100-1107
    • /
    • 2007
  • In this study, a method to characterize material properties of adhesive that is used in a layered plates bonding process is developed by combined evaluation of experiment, simulation and optimization technique. A small bonded specimens of rectangular plate are prepared to this end, and put into a thermal loading conditions. $Moir{\acute{e}}$ interferomety is used to measure submicron displacements occurred during the process. The elevated temperature is chosen as control factors. FE analysis with constant values for the adhesive materials is also carried out to simulate the experiment. Significant differences are observed from the two results, in which the simulation predicts the monotonic increase of the bending displacement whereas the measurement shows decrease of the displacement at above $75^{\circ}C$. In order to minimize the difference of the two, material parameters of the adhesive at a number of different temperatures are posed as unknowns to be determined, and optimization is conducted. As a result, optimum material parameters are found that excellently matches the simulation and experiment, which are decreased with respect to the temperature.

Strength of Anchors under Load Applied Angles (앵커볼트의 내력평가에 관한 실험적 연구)

  • Kim, Sung-Yong;Han, Duck-Jeon;Shin, Chang-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.1 s.16
    • /
    • pp.69-76
    • /
    • 2005
  • The pull-out capacity of expansion anchor(heavy duty anchor and wedge anchor) was studied experimentally in this paper. Loading conditions included tension, shear, and combined tension and shear. The heavy duty anchor and wedge anchor were manufactured in domestic and installed In plain concrete. The failure mode of steel and concrete were studied carefully for the analytical formula of the anchorage design and the experimental data were compared with different models for the interaction of tension and shear capacities. Based on the research, the following conclusion may be drawn : The interaction of forces is well-described by an elliptical interaction relationship.

Seismic Qualification of the Air Cleaning Units for Nuclear Power Plant Ulchin 5&6 (울진 원자력발전소 5,6 호기용 공기정화기에 대한 내진검증)

  • Kim, Jin-Young;Rhee, Hui-Nam;Lee, Joon-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1376-1383
    • /
    • 2002
  • Seismic qualification of the Air Cleaning Units for nuclear power plant Ulchin 5&6 has been performed with the guideline of ASME Section III and IEEE 344 code. By using the structural and geometrical similarity analysis, the three models to be analyzed are condensed into a single model and, at the same time, the excitation forces and other operating loads for each model are encompassed with respect to different loading conditions. As the fundamental frequencies of the structure are found to be less than 33Hz, which is the upper frequency limit of the seismic load, response spectrum analysis using ANSYS is performed in order to combine the modal stresses within the frequency limit. In order to confirm the structural and electric stability of the major components, modal analysis theory is adopted to derive the required response spectrum at the component locations. As the all combined stresses obtained from the above procedures are less than allowable stresses and no mechanical or electrical failures are found from the seismic testing, the authors confirm the safety of the nuclear equipments Air Cleaning Units studied in this paper.