• Title/Summary/Keyword: combined loading conditions

Search Result 134, Processing Time 0.036 seconds

The Combined Tensile and Torsional Behavior of Irregular Fibers

  • He, Weiyu;Wang, Xungai
    • Fibers and Polymers
    • /
    • v.3 no.1
    • /
    • pp.31-37
    • /
    • 2002
  • Most fibers are irregular, and they are often subjected to combined loading conditions during processing and enduse. In this paper polyester and wool fibers under the combined tensile and torsional loads have been studied for the first time using the finite element method (FEM). The dimensional irregularities of these fibers are simulated with sine waves of different magnitude and frequency. The breaking load and breaking extension of the fibers at different twist or torsion levels are then calculated from the finite element model. The results indicate that twist and level of fiber irregularity have a major impact on the mechanical properties of the fiber and the effect of the frequency of irregularity is relatively small.

Investigation on interlaminar shear stresses in laminated composite beam under thermal and mechanical loading

  • Murugesan, Nagaraj;Rajamohan, Vasudevan
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.583-601
    • /
    • 2015
  • In the present study, the combined effects of thermal and mechanical loadings on the interlaminar shear stresses of both moderately thin and thick composite laminated beams are numerically analyzed. The finite element modelling of laminated composite beams and analysis of interlaminar stresses are performed using the commercially available software package MSC NASTRAN/PATRAN. The validity of the finite element analysis (FEA) is demonstrated by comparing the experimental test results obtained due to mechanical loadings under the influence of thermal environment with those derived using the present FEA. Various parametric studies are also performed to investigate the effect of thermal loading on interlaminar stresses generated in symmetric, anti-symmetric, asymmetric, unidirectional, cross-ply, and balanced composite laminated beams of different stacking sequences with identical mechanical loadings and various boundary conditions. It is shown that the elevated thermal environment lead to higher interlaminar shear stresses varying with the stacking sequence, length to thickness ratio, ply orientations under identical mechanical loading and boundary conditions of the composite laminated beams. It is realized that the magnitude of the interlaminar stresses along xz plane is always much higher than those of along yz plane irrespective of the ply-orientation, length to thickness ratios and boundary conditions of the composite laminated beams. It is also observed that the effect of thermal environment on the interlaminar shear stresses in carbon-epoxy fiber reinforced composite laminated beams are increasing in the order of symmetric cross-ply laminate, unidirectional laminate, asymmetric cross-ply laminate and anti-symmetric laminate. The interlaminar shear stresses are higher in thinner composite laminated beams compared to that in thicker composite laminated beams under all environmental temperatures irrespective of the laminate stacking sequence, ply-orientation and boundary conditions.

Stress Distributions in a Plate due to Shear Loading Uniformly Distributed on the End Portions of its Side Boundary. (부분적(部分的)인 균일전단하중(均一傳達荷重)을 받는 평판(平板)에서의 응력분포(應力分布))

  • Hyo-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.7 no.1
    • /
    • pp.37-44
    • /
    • 1970
  • The plate under shear loading umformly distributed on the end portions of its side boundary was considered. Infinite hyperbolic serieses and Fourier serieses were combined as a stress function and from which exact solutions for the 15 cases for the parameters of b/L=0.25, 0.5, 1.0 and l/L=0.2, 0.4, 0.6, 0.8, 1.0 are obtained. In each cases the first 5 terms of the infinite series at the 36 points as shown in Fig. 3. The results are presented in Fig. 4-1, 4-2, and 4-3. The conclusions are as follows: 1) The stresses ${\sigma}_x$ increase very slightly as $\chi$ increases in the range of 0<x<L-l 2) When the parameters satisfy the conditions b/L<0.25 and l/L<0.2, the stresses in the region of 0<x<L-l can be obtained by replacing the uniform shear loading by the equivalent uniform shear loading by the equivalent uniform tensile force and pure bending moment at x=l. 3) The stress ${\sigma}_y$ is negligible throughout the region. 4) When the parameter b/L varies, the stresses ${\sigma}_x$ and u vary as L/b, while strain $\upsilon$ varies as $(L/b)^2$.

  • PDF

A mathematical model to predict fatigue notch factor of butt joints

  • Nguyen, Ninh T.;Wahab, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.467-471
    • /
    • 1998
  • A mathematical model is developed to predict the fatigue notch factor of butt welds subject to number of parameters such as weld geometry, residual stresses under dynamic combined loading conditions (tensile and bending). Linear elastic fracture mechanics, finite element analysis, dimensional analysis and superposition approaches are used for the modelling. The predicted results are in good agreement with the available experimental data. As a result, scatters of the fatigue data can be significantly reduced by plotting S-N curve as ($S{\cdot}K_f$) vs. N.

Prediction of Fatigue Crack Propagation Behavior Under Mixed-Mode Single Overload (혼합모드 단일과대하중 하에서 피로균열 전파거동의 예측)

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.359-364
    • /
    • 2004
  • In this study, experiments were tried on the mixed-mode I+II single overloading model which changes the loading mode of overload and fatigue load. Aspects of deformation field in front of the crack which is formed by mixed-mode I+II single overloading were experimentally studied. Then the shape and size of mixed-mode plastic zone were approximately calculated. The propagation behavior of fatigue crack was examined under the test conditions combined by changing the loading mode. The behavior of fatigue cracks were greatly affected by shapes of plastic deformation field and applying mode of fatigue load. Accuracy of prediction and evaluation for fatigue life may be improved by considering all aspects of deformation and behavior of fatigue cracks.

  • PDF

Green's Function of Cracks in Piezoelectric Material (압전재료 내의 균열에 대한 그린함수)

  • Choi, Sung-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.967-974
    • /
    • 2007
  • A general form solution is considered for a piezoelectric material containing impermeable cracks subjected to a combined mechanical and in-plane electrical loading. The analysis is based upon the Hilbert problem formulation. Using this solution, typically for a central crack in transverse isotropic piezoelectric material, a closed form solution is obtained, where one concentrated mechanical and electrical load is subjected to the crack surface. This problem could be used as a Green's function to generate the solutions of other problems with the same geometry but of different loading conditions.

A Study on the Buckling and Ultimate Strength for Cylindrically curved plate subject to combined load (조합하중을 받는 원통형 곡판구조의 좌굴 및 최종강도 거동에 관한 연구)

  • Oh, Young-Cheol;Ko, Jae-Yong;Lee, Kyoung-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.25-26
    • /
    • 2007
  • Ship are typically thin-walled structures and consists of stiffened plate structure by purpose of required design load and weight reduction etc. Also, a hull structural characteristics are often used in structures with curvature at deck plating with camber, side shell plating at fore and aft parts and bilge circle parts, It have been believed that these structures can be modelled fundamentally by a part of cylinder. Structural component with curvature subjected to combined loading regimes and complex boundary conditions, which can potentially collapse due to buckling. Hence, for more rational and safe design of ship structures, it is crucial importance to better understand the interaction relationship of the buckling and ultimate strength for cylindrically curved plate under these load components. In this study, the ultimate strength characteristic of curved plate under combined load(lateral pressure load + axial compressive load) are investigated through using FEM series analysis with varying geometric panel properties.

  • PDF

Numerical study on the rate-dependent behavior of geogrid reinforced sand retaining walls

  • Li, Fulin;Ma, Tianran;Yang, Yugui
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.195-205
    • /
    • 2021
  • Time effect on the deformation and strength characteristics of geogrid reinforced sand retaining wall has become an important issue in geotechnical and transportation engineering. Three physical model tests on geogrid reinforced sand retaining walls performed under various loading conditions were simulated to study their rate-dependent behaviors, using the presented nonlinear finite element method (FEM) analysis procedure. This FEM was based on the dynamic relaxation method and return mapping scheme, in which the combined effects of the rate-dependent behaviors of both the backfill soil and the geosynthetic reinforcement have been included. The rate-dependent behaviors of sands and geogrids should be attributed to the viscous property of materials, which can be described by the unified three-component elasto-viscoplastic constitutive model. By comparing the FEM simulations and the test results, it can be found that the present FEM was able to be successfully extended to the boundary value problems of geosynthetic reinforced soil retaining walls. The deformation and strength characteristics of the geogrid reinforced sand retaining walls can be well reproduced. Loading rate effect, the trends of jump in footing pressure upon the step-changes in the loading rate, occurred not only on sands and geogrids but also on geogrid reinforced sands retaining walls. The lateral earth pressure distributions against the back of retaining wall, the local tensile force in the geogrid arranged in the retaining wall and the local stresses beneath the footing under various loading conditions can also be predicted well in the FEM simulations.

A Numerical Study on the Effect of Initial Shape on Inelastic Deformation of Solder Balls under Various Mechanical Loading Conditions (다양한 기계적 하중조건에서 초기 형상이 솔더볼의 비탄성 변형에 미치는 영향에 관한 수치적 연구)

  • Da-Hun Lee;Jae-Hyuk Lim;Eun-Ho Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.50-60
    • /
    • 2023
  • Ball Grid Array (BGA) is a widely used package type due to its high pin density and good heat dissipation. In BGA, solder balls play an important role in electrically connecting the package to the PCB. Therefore, understanding the inelastic deformation of solder balls under various mechanical loads is essential for the robust design of semiconductor packages. In this study, the geometrical effect on the inelastic deformation and fracture of solder balls were analyzed by finite element analysis. The results showed that fracture occurred in both tilted and hourglass shapes under shear loading, and no fracture occurred in all cases under compressive loading. However, when bending was applied, only the tilted shape failed. When shear and bending loads were combined with compression, the stress triaxiality was maintained at a value less than zero and failure was suppressed. Furthermore, a comparison using the Lagrangian-Green strain tensor of the critical element showed that even under the same loading conditions, there was a significant difference in deformation depending on the shape of the solder ball.

The effect of welding on the strength of aluminium stiffened plates subject to combined uniaxial compression and lateral pressure

  • Pedram, Masoud;Khedmati, Mohammad Reza
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.39-59
    • /
    • 2014
  • Nowadays aluminum stiffened plates are one of the major constituents of the marine structures, especially high-speed vessels. On one hand, these structures are subject to various forms of loading in the harsh sea environment, like hydrostatic lateral pressures and in-plane compression. On the other hand, fusion welding is often used to assemble those panels. The common marine aluminum alloys in the both 5,000 and 6,000 series, however, lose a remarkable portion of their load carrying capacity due to welding. This paper presents the results of sophisticated finite-element investigations considering both geometrical and mechanical imperfections. The tested models were those proposed by the ultimate strength committee of $15^{th}$ ISSC. The presented data illuminates the effects of welding on the strength of aluminum plates under above-mentioned load conditions.