• Title/Summary/Keyword: combined heat and power system

Search Result 188, Processing Time 0.028 seconds

A Study on Calculation of Combined Heat and Power on Standpoint of Nation and Independent Power Producers (국가 및 전력회사의 관점에서 열병합발전의 편익산정에 관한 연구)

  • Kim, Yong-Ha;Lee, Pyong-Ho;Kim, Young-Gil;Jo, Hyun-Mi;Woo, Sung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.905-912
    • /
    • 2011
  • In this paper, the method on calculating benefits of combined heat and power is introduced for standard evaluation in electrical power system. This paper calculates benefits about new national viewpoint and viewpoint of independent power producers and assesses benefits of combined heat and power in Korea and In Seoul national capital area. Benefit costs are composed of avoid cost of centralized generation, line upgrading adjustment, loss adjustment and electrical power trade cost per year in earlier study, in addition trade cost of $CO_2$, construction cost of combined heat and power for accurate calculation. Benefit of combined heat and power is calculated by simulation results of real electrical power system.

Greenhouse Gas Mitigation Effect Analysis by Establishing Additional Heat Storage System for Combined Heat and Power Plant (열병합발전소에서의 축열조 증설에 의한 온실가스 감축 효과 분석)

  • Kim, Shang Mork;Yoon, Joong Hwan;Lim, Kyoung Mi
    • Journal of Climate Change Research
    • /
    • v.2 no.3
    • /
    • pp.175-189
    • /
    • 2011
  • In this research, we describe the methodology and the quantification about GHG reduction effects, expected by optimization of operation mode according to establishing additional heat storage system of Bundang Combined Cycle Power Plant. As an intermediate form of General Combined Cycle Power Plant and Heat supply only district heating plant, Bundang Combined Cycle Power Plant(and Ilsan, Anyang, Bucheon) is possible to satisfy demand for the electrical load and thermal load capacity at the same time through changes to the operation mode itself. Therefore, through the operating transition of high-efficiency mode that the condenser cooling water is recovered and supplied to district heat and cooling, establishing additional heat storage system have flexible supply ability at the power and heat market. In this research, We calculated using the operating performance for the last three years(2008~2010) and efficiency of each mode-specific values. As a result, GHG reduction effects were calculated as $97.95kg_{-}CO_2/Gcal$ per heat energy 1 Gcal supplied at the heat storage system and we expected emmision reduction effect about $13,500Ton_{-}CO_2/yr$.

Assessment of Benefits on Distributed Generation in KOREA (우리나라 전력계통의 분산형 전원에 대한 정량적 편익산정)

  • Kim, Yong-Ha;Kim, Ui-Gyeong;Oh, Seok-Hyun;Kim, Dong-Gun;Lee, Pyong-Ho;Woo, Sung-Min
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.686-687
    • /
    • 2011
  • In this paper, the method on calculating benefits of combined heat and power is introduced for standard evaluation in electrical power system. This paper calculates benefits about new national viewpoint and viewpoint of independent power producers and assesses benefits of combined heat and power in Korea and In Seoul national capital area. Benefit costs are composed of avoid cost of centralized generation, line upgrading adjustment, loss adjustment and electrical power trade cost per year in earlier study, in addition trade cost of CO2, construction cost of combined heat and power for accurate calculation. Benefit of combined heat and power is calculated by simulation results of real electrical power system.

  • PDF

Solar tower combined cycle plant with thermal storage: energy and exergy analyses

  • Mukhopadhyay, Soumitra;Ghosh, Sudip
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.29-45
    • /
    • 2016
  • There has been a growing interest in the recent time for the development of solar power tower plants, which are mainly used for utility scale power generation. Combined heat and power (CHP) is an efficient and clean approach to generate electric power and useful thermal energy from a single heat source. The waste heat from the topping Brayton cycle is utilized in the bottoming HRSG cycle for driving steam turbine and also to produce process steam so that efficiency of the cycle is increased. A thermal storage system is likely to add greater reliability to such plants, providing power even during non-peak sunshine hours. This paper presents a conceptual configuration of a solar power tower combined heat and power plant with a topping air Brayton cycle. A simple downstream Rankine cycle with a heat recovery steam generator (HRSG) and a process heater have been considered for integration with the solar Brayton cycle. The conventional GT combustion chamber is replaced with a solar receiver. The combined cycle has been analyzed using energy as well as exergy methods for a range of pressure ratio across the GT block. From the thermodynamic analysis, it is found that such an integrated system would give a maximum total power (2.37 MW) at a much lower pressure ratio (5) with an overall efficiency exceeding 27%. The solar receiver and heliostats are the main components responsible for exergy destruction. However, exergetic performance of the components is found to improve at higher pressure ratio of the GT block.

A Study on the Safety Management Methods of Micro-Gas Engine Combined Heat and Power System (소형 가스엔진 열병합발전 시스템의 안전관리 방안에 관한 연구)

  • Kim, So-Hyun;Kim, Min-Woo;Lee, Eun-Kyung;Lee, Jung-Woon
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.76-89
    • /
    • 2018
  • The distribution of the combined heat and power system is active as a solution to the instability of energy supply and environmental pollution caused by continuous industrial development. In Korea, the safety standards for combined heat and power system using a gas engine are insufficient therefore the study on this is needed. In this study, the safety performance and structural/material assessment items of domestic and international standards applied to the combined heat and power system were analyzed to carry out a standardization study on safety performance applicable to 20 kW gas engine combined heat and power system. In addition, the safety performance assessment (plan) of the gas engine combined heat and power system was derived by performing risk analysis and risk assessment using HAZOP. Assessment items include engine ignition systems related to safety performance, piping tight performance, watering and temperature rise performance, combustion performance, electrical efficiency, thermal efficiency, overall efficiency and humidity performance. Gas and water pipes, gas control and shut-off valves, durability, heat resistance, and cold resistance of metal or non-metallic materials related to the structure and materials of the gas engine combined heat and power systems.

Development of kW Class SOFC Systems for Combined Heat and Power Units at KEPRI

  • Lee, Tae-Hee;Choi, Jin-Hyeok;Park, Tae-Sung;Yoo, Keun-Bae;Yoo, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.772-776
    • /
    • 2008
  • The Korea Electric Power Research Institute (KEPRI) has been developing planar solid oxide fuel cells (SOFCs) and power systems for combined heat and power (CHP) units. The R&D work includes solid oxide fuel cell (SOFC) materials investigation, design and fabrication of single cells and stacks, and kW class SOFC CHP system development. Anode supported cells composed of Ni-YSZ/FL/YSZ/LSCF were enlarged up to $15{\times}15\;cm^2$ and stacks were manufactured using $10{\times}10\;cm^2$ cells and metallic interconnects such as ferritic stainless steel. The first-generation system had a 37-cell stack and an autothermal reformer for use with city gas. The system showed maximum stack power of about $1.3\;kW_{e,DC}$ and was able to recover heat of $0.57{\sim}1.2\;kW_{th}$ depending on loaded current by making hot water. The second-generation system was composed of an improved 48-cell stack and a prereformer (or steam reformer). The thermal management subsystem design including heat exchangers and insulators was also improved. The second-generation system was successfully operated without any external heat source. Under self-sustainable operation conditions, the stack power was about $1.3\;kW_{e,DC}$ with hydrogen and $1.2\;kW_{e,DC}$ with city. The system also recuperated heat of about $1.1\;kW_{th}$ by making hot water. Recently KEPRI manufactured a 2kW class SOFC stack and a system by scaling up the second-generation 1kW system and will develop a 5kW class CHP system by 2010.

Performance Design Analysis of the Bottoming System of Combined Cycle Power Plants (복합화력발전 하부시스템의 성능설계해석)

  • Lee, B.R.;Kim, T.S.;Ro, S.T.;Shin, H.T.;Jeon, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.738-743
    • /
    • 2001
  • A computer program, capable of performing thermal design analysis of the triple pressure bottoming system of combined cycle power plants, was developed. The program is based on thermal analysis of the heat recovery steam generator and estimation of its size and steam turbine power. The program is applicable to various parametric analyses including optimized design calculation. This paper presents examples of analysis results for the effects of arrangement of heat exchanger units, steam pressures and deaerating sources on design performance indices such as steam turbine power and the size of heat recovery steam generator.

  • PDF

Design Performance Analysis of Micro Gas Turbine-Organic Rankine Cycle Combined System (마이크로 가스터빈과 유기매체 랜킨사이클을 결합한 복합시스템의 설계 성능해석)

  • Lee Joon Hee;Kim Tong Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.536-543
    • /
    • 2005
  • This study analyzes the design performance of a combined system of a recuperated cycle micro gas turbine (MGT) and a bottoming organic Rankine cycle (ORC) adopting refrigerant (R123) as a working fluid. In contrast to the steam bottoming Rankine cycle, the ORC optimizes the combined system efficiency at a higher evaporating pressure. The ORC recovers much greater MGT exhaust heat than the steam Rankine cycle (much lower stack temperature), resulting in a greater bottoming cycle power and thus a higher combined system efficiency. The optimum MGT pressure ratio of the combined system is very close to the optimum pressure ratio of the MGT itself. The ORC's power amounts to about $25\%$ of MGT power. For the MGT turbine inlet temperature of $950^{\circ}C$ or higher, the combined system efficiency, based on shaft power, can be higher than $45\%$.

An Investigation of the Connectivity between Combined Heat and Power and Smart Grid Technologies (열병합발전과 스마트 그리드 기술과의 연계성 검토)

  • Kim, Won-Gi;Seo, Hun-Cheol;Lee, Je-Won;Kim, Cheol-Hwan;Kim, Yong-Ha;Kim, Ui-Gyeong;Son, Hak-Sik;Kim, Gil-Hwan
    • 전기의세계
    • /
    • v.60 no.11
    • /
    • pp.56-63
    • /
    • 2011
  • In the face of global warming and resource depletion, a smart grid has been suggested as one way of contributing to abating the environment problems and increasing energy efficiency. Smart grids utilize renewable energy which has intermittent and irregular output power depending on weather conditions. In order to maintain stability and reliability of the power system, smart grids need to have complementary measures for the possible unstable system conditions. Cogenerating systems such as Combined Heat and Power(CHP) can be one good solution as it has capability of instantly increasing or decreasing output power. Therefore, this paper investigates the connectivity between Combined Heat and Power systems and smart grid technologies. The smart grid national roadmap formulated by South Korea Ministry of Knowledge and Economy and 'IEC Smart Grid Standardization Roadmap' are analyzed to extract related components of the smart grid for the CHP connection. Also, case studies on demonstration projects for smart grids with CHP systems completed or currently being implementing in the world are presented.

  • PDF

Computer Simulation to Predict Operating Behavior of a Gas Engine Driven Micro Combined Heat and Power System (소형 가스엔진 열병합발전의 운전거동 예측을 위한 컴퓨터 시뮬레이션)

  • Cho, Woo-Jin;Lee, Kwan-Soo;Kim, In-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.873-880
    • /
    • 2010
  • The present study developed a computer simulation program to determine the optimum strategy and capacity of a micro combined heat and power(CHP) system. This simulation program considered a part-load electrical/thermal efficiency and transient response characteristics of CHP unit. The result obtained from the simulation was compared with the actual operation of 30 kW gas engine driven micro CHP system. It was found that the simulation could reproduce the daily operation behavior, such as operating hours and mean load factor, closely to the actual behavior of the system and could predict the amount of electrical/thermal output and fuel consumption with the error of less than 12%.