• Title/Summary/Keyword: combined gain

Search Result 400, Processing Time 0.021 seconds

Combined Gain Analysis of L-band Transmit Antenna in COMS (COMS L-대역 송신 안테나 합성 이득 해석)

  • Kim, Joong-Pyo;Yang, Koon-Ho;Lee, Sang-Kon
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.19-24
    • /
    • 2010
  • The COMS (Communication Ocean Meteorological Satellite) is a hybrid geostationary satellite including communication, ocean, and meteorological payloads. The COMS includes the MODCS (Meteorological and Ocean Data Communication Subsystem) which provides transmitting the raw data collected by meteorological payload called MI (Meteorological Imager) and ocean payload named GOCI (Geostationary Ocean Color Imager) to the ground station, and relaying the meteorological data processed on the ground to the end-user stations. Here, for the L-band transmit antenna transmitting SD (Sensor Data) signal and the processed signal, from the system point of view, it is required to estimate the combined antenna gain when the L-band transmit is placed with MI and GOCI payloads on the earth panel of COMS. First of all, the L-band transmit horn is designed and analyzed for the requirements given, and then after placing it on the earth panel, the combined gain analysis is performed using three different analysis methods. It's shown that the obtained gain patterns are very similar among three different analysis methods. Finally the antenna gain degradation of less than 0.5 dB is estimated.

Analysis on the Impact of Multiple-Antenna Transmit Schemes on Multiuser Diversity

  • Lee, Myoung-Won;Mun, Cheol;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.4
    • /
    • pp.222-228
    • /
    • 2006
  • In this paper, the performance of a multiuser diversity system combined with a multi-element transmit antenna system is analyzed under the assumption of independent Rayleigh fading. A measure of system .level performance is an average channel capacity as a function of the number of users and antennas. Average channel capacity is obtained from the instantaneous signal-to-noise ratio(SNR) distribution combined by both transmit diversity(TD) at each link and multiuser diversity at system level. Numerical results show that closed-loop antenna techniques provide an additional gain with multiuser diversity system due to array gain, even though space diversity gain reduces multiuser diversity gain. On the other hand, the space-time block coding(STBC) that provides full order space diversity gain only has a destructive influence on multiuser diversity.

Combined Relay Selection and Cooperative Beamforming for Physical Layer Security

  • Kim, Jun-Su;Ikhlef, Aissa;Schober, Robert
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.364-373
    • /
    • 2012
  • In this paper, we propose combined relay selection and cooperative beamforming schemes for physical layer security. Generally, high operational complexity is required for cooperative beamforming withmultiple relays because of the required information exchange and synchronization among the relays. On the other hand, while it is desirable to reduce the number of relays participating in cooperative beamforming because of the associated complexity problem, doing so may degrade the coding gain of cooperative beamforming. Hence, we propose combined relay selection and cooperative beamforming schemes, where only two of the available relays are selected for beamforming and data transmission. The proposed schemes introduce a selection gain which partially compensates for the decrease in coding gain due to limiting the number of participating relays to two. Both the cases where full and only partial channel state information are available for relay selection and cooperative beamforming are considered. Analytical and simulation results for the proposed schemes show improved secrecy capacities compared to existing physical layer security schemes employing cooperative relays.

Effect of Optical Delay on the Suppression of the Power Transient Excursion in a Combined Gain-Controlled Erbium-Doped Fiber Amplifier

  • Chung, Hee-Sang;Chang, Sun-Hyok;Park, Heuk;Lee, Hyun-Jae;Chu, Moo-Jung
    • ETRI Journal
    • /
    • v.25 no.6
    • /
    • pp.531-534
    • /
    • 2003
  • This report describes the effect of optical delay on the suppression of the power transient excursion in a combined gain-controlled erbium-doped fiber amplifier with an internal optical feedback loop (OFL). A simple homogeneous model showed that the optical delay caused a phase change in the oscillation of the surviving and laser channels, which resulted in a reduction of the overall power transient excursion. In addition to the reduction, a real system with a 1528.7-nm OFL shifted the oscillation upward or downward according to channel removal or addition, whereas another one with a 1560.9-nm OFL did not. This different transient behavior reflected a control-wavelength dependence on optical automatic gain control, where spectral-hole burning dominated over relaxation oscillation for 1528.7 nm, and vice versa for 1560.9 nm.

  • PDF

Structure-Control Combined Optimal Design of 3-D Truss Structure Considering Intial State and Feedback Gain

  • Park, Jung-Hyen
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.66-72
    • /
    • 2003
  • This paper proposes an optimum, problematic design for structural and control systems, taking a 3-D truss structure as an example. The structure is subjected to initial static loads and time-varying disturbances. The structure is controlled by a state feedback H$_{\infty}$ controller which suppress the effects of disturbances. The design variables are the cross sectional areas of truss members. The structural objective function is the structural weight. For the control objective, we consider two types of performance indices, The first function represents the effect of the initial loads. The second function is the norm of the feedback gain, These objective functions are in conflict with each other but are transformed into one control objective by the weighting method. The structural objectives is treated as the constraint, By introducing the second control objective which considers the magnitude of the feedback gain, we can create a design to model errors.

Simulation Efficiency for Estimation of System Parameters in Computer Simulation (컴퓨터 시뮬레이션을 통한 시스템 파라미터 추정의 효율성)

  • Kwon, Chi-Myung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.1
    • /
    • pp.61-71
    • /
    • 1993
  • We focus on a way of combining the Monte Calro methods of antithetic variates and control variates to reduce the variance of the estimator of the mean response in a simulation experiment. Combined Method applies antithetic variates (partially) for driving approiate stochastic model components to reduce the vaiance of estimator and utilizes the correlations between the response and control variates. We obtain the variance of the estimator for the response analytically and compare Combined Method with control variates method. We explore the efficiency of this method in reducing the variance of the estimator through the port operations model. Combined Method shows a better performance in reducing the variance of estimator than methods of antithetic variates and control variates in the range from 6% to 8%. The marginal efficiency gain of this method is modest for the example considered. When the effective set of control variates is small, the marginal efficiency gain may increase. Though these results are from the limited experiments, Combined Method could profitably be applied to large-scale simulation models.

  • PDF

A Joint Scheme of AGC and Gain/Phase Mismatch Compensation for QPSK DCR

  • Song, Yun-Jeong;Lee, Ho-Jin;Ra, Sung-Woong;Kim, Young-Wan
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.501-504
    • /
    • 2004
  • This paper presents a simple gain/phase blind compensation algorithm with an automatic gain control (AGC) function for the adoption of the AGC function and compensation for gain/phase imbalances in quadrature phase shift keying (QPSK) direct conversion receivers (DCRs). The AGC function is interactively operated with the compensation algorithm for gain/phase imbalances. By detecting the gain sum and difference values between the I-channel and Q-channel, the combined AGC and gain imbalance compensation algorithm provides a simpler DCR architecture.

  • PDF

A Novel Modeling and Performance Analysis of Imperfect Quadrature Modulator in RF Transmitter

  • Park, Yong-Kuk;Kim, Hyeong-Seok;Lee, Ki-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.570-575
    • /
    • 2012
  • In a wireless communication RF transmitter, the output of a quadrature modulator (QM) is distorted by not only the linear imperfection features such as in/quadrature-phase (I/Q) input gain imbalance, local phase imbalance, and local gain imbalance but also the nonlinear imperfection features such as direct current (DC) offset and mixer nonlinearity related to in-band spurious signal. In this paper, we propose the unified QM model to analyze the combined effects of the linear and nonlinear imperfection features on the performance of the QM. The unified QM model consists of two identical nonlinear systems and modified I/Q inputs based on the two-port nonlinear mixer model. The unified QM model shows that the output signals can be expressed by mixer circuit parameters such as intercept point and gain as well as the imperfection features. The proposed approach is validated by not only simulation but also measurement.

Combined Design of Robust Control System and Structure System (강인성 제어 시스템과 구조 시스템의 통합 최적 설계)

  • Park, J.H.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.38-43
    • /
    • 2003
  • This paper proposes an optimum design problem of structural and control systems. taking a 3-D truss structure as an example. The structure is supposed to be subjected to initial static loads and time-varying disturbances. The structure is controlled by a state feedback $H_{\infty}$ controller to suppress the effect of the disturbances. The design variables are the cross sectional areas of truss members. The structural objective function is the structural weight. As the control objective, we consider two types of performance indices. The first function represents the effect of the initial loads. The second one is the norm of the feedback gain. These objective functions are in conflict with each other. Then, first, two control objective functions are transformed into one control objective by the weighting method. Next, the structural objective is treated as the constraint. By introducing the second control objective which considers the magnitude of the feedback gain, we can per limn the design which is robust in modeling errors.

  • PDF

Spectroscopic Analysis of Gain Bandwidth in Raman Amplifier with Multiwavelength Pumping Scheme Using Actual Band Model

  • Felinskyi, Georgii;Han, Young-Geun;Lee, Sang-Bae
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.156-162
    • /
    • 2004
  • The spectroscopic model is proposed to analyze the gain bandwidth of a fiber Raman amplifier (FRA) with a multiple wavelength pumping scheme based on Raman gain theory. The oscillatory lineshape, which is the analytic function to analyze Raman gain spectra, allows us to estimate the gain bandwidth of the FRA. Based on the proposed theoretical modeling, we design and analyze the characteristics of the FRA using the combined multiwavelength pumping sources. We achieved the extended gain bandwidth of the FRA over 80 nm with the small gain ripple less than 0.5 dB. Threshold pumping power and effective noise figure for the FRA can be also analyzed by using the proposed model, which is also applicable for versatile fibers with other doping materials. The proposed analysis method can be useful for the design of FRA with the multiwavelength pumping scheme.