• Title/Summary/Keyword: combined force

Search Result 729, Processing Time 0.02 seconds

A Development of Combined-Type Tool Dynamometer for Ultraprecision Lathe with Piezo-Film Accelerometer (복합 압전필름형 가속도계를 이용한 초정밀 선반 공구동력계의 개발에 관한 연구)

  • Kim, J.D.;Kim, D.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.87-96
    • /
    • 1995
  • The cutting force is the most important variable to understand the mechanics of ultra-precision machining. Most dynamometers, however, monitor the static cutting force only. But it is necessary to measure the dynamic cutting force to clarify the machinability of the material, the formation of the chip, chatter and the wear of the tool. In this research, measurement of the dynamic cutting force in order to clarify the machin-ability of the material, the formation of the chip, chatter and the wear of the tool has been conducted. A combined-type dynamometer which could measure the static cutting force and the dynamic cutting force by use of strain gauges and a piezo-film accelerometer has been developed. An analysis of the dynamometer also has been carried out.

  • PDF

An algorithm to simulate the nonlinear behavior of RC 1D structural members under monotonic or cyclic combined loading

  • Nouban, Fatemeh;Sadeghi, Kabir
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.305-315
    • /
    • 2018
  • Interaction of lateral loading, combined with axial force needs to be determined with care in reinforced concrete (RC) one-dimensional structural members (1D SMs) such as beam-columns (BCs) and columns. RC 1D SMs under heavy axial loading are known to fail by brittle mode and small lateral displacements. In this paper, a macro element-based algorithm is proposed to analyze the RC 1D SMs under monotonic or cyclic combined loading. The 1D SMs are discretized into macro-elements (MEs) located between the critical sections and the inflection points. The critical sections are discretized into fixed rectangular finite elements (FRFE). The nonlinear behavior of confined and unconfined concretes and steel elements are considered in the proposed algorithm. The proposed algorithm has been validated by the results of experimental tests carried out on full-scale RC structural members. The evolution of ultimate strain at extreme compression fiber of a rectangular RC section for different orientations of lateral loading shows that the ultimate strain decreases with increasing the axial force. In the examined cases, this ultimate strain ranges from 0.0024 to 0.0038. Therefore, the 0.003 value given by ACI-318 code for ultimate strain, is not conservative and valid for the combined load cases with significant values of axial force (i.e. for the axial forces heavier than 70% of the ultimate axial force).

Research on the support of larger broken gateway based on the combined arch theory

  • Yang, Hongyun;Liu, Yanbao;Li, Yong;Pan, Ruikai;Wang, Hui;Luo, Feng;Wang, Haiyang;Cao, Shugang
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.93-102
    • /
    • 2020
  • The excavation broken zones (EBZ) of gateways is a significant factor in determining the stability of man-made opening. The EBZ of 55 gateways with variety geological conditions were measured using Ground Penetrating Radar (GPR). The results found that the greatly depth of EBZ, the smallest is 1.5 m and the deepest is 3.5 m. Experimental investigations were carried out in the laboratory and in the coal mine fields for applying the combined arch support theory to large EBZ. The studies found that resin bolts with high tensile strength and good bond force could provide high pretension force with bolt extensible anchorage method in the field. Furthermore, the recently invented torque amplifier could greatly improve the bolt pretension force in poor lithology. The FLAC3D numerical simulation found that the main diffusion sphere of pretension force was only in the free segment zone of the surrounding rock. Further analysis found that the initial load-bearing zone thickness of the combined arch structure in large EBZ could be expressed by the free segment length of bolt. The using of high mechanical property bolts and steel with high pretension force will clearly putting forward the bolt length selection rule based on the combined arch support theory.

Investigation on seismic behavior of combined retaining structure with different rock shapes

  • Lin, Yu-liang;Zhao, Lian-heng;Yang, T.Y.;Yang, Guo-lin;Chen, Xiao-bin
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.599-612
    • /
    • 2020
  • A combination of a gravity wall and an anchor beam is widely used to support the high soil deposit on rock mass. In this study, two groups of shaking table test were performed to investigate the responses of such combined retaining structure, where the rock masses were shaped with a flat surface and a curved surface, respectively. Meanwhile, the dynamic numerical analysis was carried out for a comparison or an extensive study. The results were studied and compared between the combined retaining structures with different shaped rock masses with regard to the acceleration response, the earth pressure response, and the axial anchor force. The acceleration response is not significantly influenced by the surface shape of rock mass. The earth pressure response on the combined retaining structure with a flat rock surface is more intensive than the one with a curved rock surface. The anchor force is significantly enlarged by seismic excitation with a main earthquake-induced increment at the first intensive pulse of Wenchuan motion. The value of anchor force in the combined retaining structure with a flat rock surface is generally larger than the one with a curved rock surface. Generally, the combined retaining structure with a curved rock surface presents a better seismic performance.

Seismic response simulations of bridges considering shear-flexural interaction of columns

  • Zhang, Jian;Xu, Shi-Yu
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.545-566
    • /
    • 2009
  • Bridge columns are subjected to combined actions of axial force, shear force and bending moment during earthquakes, caused by spatially-complex earthquake motions, features of structural configurations and the interaction between input and response characteristics. Combined actions can have significant effects on the force and deformation capacity of RC columns, resulting in unexpected large deformations and extensive damage that in turn influences the performance of bridges as vital components of transportation systems. This paper evaluates the seismic response of three prototype reinforced concrete bridges using comprehensive numerical models that are capable of simulating the complex soil-structural interaction effects and nonlinear behavior of columns. An analytical approach that can capture the shear-flexural interacting behavior is developed to model the realistic nonlinear behavior of RC columns, including the pinching behavior, strength deterioration and stiffness softening due to combined actions of shear force, axial force and bending moment. Seismic response analyses were conducted on the prototype bridges under suites of ground motions. Response quantities of bridges (e.g., drift, acceleration, section force and section moment etc.) are compared and evaluated to identify the effects of vertical motion, structural characteristics and the shear-flexural interaction on seismic demand of bridges.

Analytical Study for Performance Improvement of Studs for Steel Plate Concrete(SC) Walls subjected to Combined Loads (조합하중을 받는 강판 콘크리트(SC) 벽체에서 스터드의 성능개선을 위한 해석적 연구)

  • Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.108-116
    • /
    • 2015
  • This study analytically reviewed the behavior of Steel Plate Concrete(SC) walls subjected to combined loads of axial force, flexural moment, and shear force to investigate the effects of shape and arrangement spacing of studs on the behavior of SC walls. To perform it, 9 cases of finite element analyses considering the different shape and spacing of studs in SC wall were carried out. The results showed that, for SC walls combined steel plate and concrete according to the Design Code, the compressive strength is higher than the tensile strength. Compared results from the finite element analyses of SC walls subjected to combined loads with Design Code showed that all cases were higher than the design strength. For KEPIC SNG, the moment and shear force were not influenced by the axial force of 0.1 to 0.2 times axial strength, however, from the analyses, it was found that the values were decreased as the axial force is increased.

The Effects of Electro-Osmosis and Compression on the Dewatering of Agricultural Wastes (고함수 농산폐기물의 탈수과정에서 전기침투와 압력의 효과)

  • 김영중;윤진하;이운용
    • Journal of Biosystems Engineering
    • /
    • v.21 no.1
    • /
    • pp.52-59
    • /
    • 1996
  • In this study, the combined forces of electro-osmosis and compression were applied to cabbage dewatering and their effects were discussed. Nine treatments of combined forces consisting of three levels of voltage and compression were applied to chopped and macerated chinese cabbage placed in the experimental set-up consisted of cylinder-piston. The results showed that as both voltage and pressure increased the dewatering rates increased and the combined force of voltage and compression was a very effective means in the dewatering of chinese cabbage in which the largest dewatering rate difference, 72%, was found between the combined force of 30V with 68.2kPa and no voltage(0V) with 68.2kPa. However, no significant difference was found between the voltage of 0 and 10volts in 9.75kPa and the pressure of 68.2kP and 126.7kPa in 30volts. The maximum and minimum dewatering rate were 82% in the combined force of 30 volts of 126.7kPa and 8% in 0 volt of 9.75kPa, respectively. Within the experimental trials, it appeared that the best treatment combination would be pressure of 68.2kPa and voltage of 30V producing dewatering rate of 80ft in which the produced liquid contained about 1% solid. Employing this dewatering method as a pretreatment before drying process can contribute in considerable energy saving in agricultural wastes treatment.

  • PDF

Effect of Neuromuscular Electrical Stimulation Combined with Traditional Dysphagia Rehabilitation on Masseter Muscle Thickness and Bite Force in Stroke with Dysphagia Patient

  • Lee, Myunglyeol;Lee, Kuija;Kim, Jinuk
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.12 no.2
    • /
    • pp.2365-2369
    • /
    • 2021
  • Background: Patients with dysphagia after stroke are treated with neuromuscular electrical stimulation (NMES), but its effect on masseter muscle thickness and bite force in the oral phase is not well known. Objectives: To investigated the effect of NMES on masseter muscle thickness and occlusal force in patients with dysphagia after stroke. Design: Two group, pre-post design. Methods: In this study, 25 patients with dysphagia after stroke were recruited and allocated to either the experimental or the control groups. Patients in the experimental group were treated with NMES to the masseter muscle at the motor level for 30 minutes and were additionally treated with traditional swallowing rehabilitation for 30 minutes. In contrast, patients in the control group were only treated with traditional swallowing rehabilitation for 30 minutes. Masseter muscle thickness was measured using ultrasonography before and after intervention, and bite force was measured using an bite force meter. Results: The experimental group showed significant improvement in masseter muscle thickness and bite force compared to the control group. Conclusion: NMES combined with traditional dysphagia rehabilitation is effective in improving masseter muscle thickness and bite force in patients with dysphagia after stroke.

Seismic response of combined retaining structure with inclined rock slope

  • Yu-liang, Lin;Jie, Jin;Zhi-hao, Jiang;Wei, Liu;Hai-dong, Liu;Rou-feng, Li;Xiang, Liu
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.591-604
    • /
    • 2022
  • A gravity wall combined with an anchoring lattice frame (a combined retaining structure) is adopted at a typical engineering site at Dali-Ruili Railway Line China. Where, the combined retaining structure supports a soil deposit covering on different inclined rock slopes. With an aim to investigate and compare the effects of inclined rock slopes on the response of combined retaining structure under seismic excitation, three groups of shaking table tests are conducted. The rock slopes are shaped as planar surfaces inclined at angles of 20°, 30°, and 40° with the horizontal, respectively. The shaking table tests are supplemented by dynamic numerical simulations. The results regarding the horizontal acceleration response, vertical acceleration response, permanent displacement mode, and axial anchor force are comparatively examined. The acceleration response is more susceptible to outer structural profile of combined retaining structure than to inclined angle of rock slope. The permanent displacement decreases when the inclined angle of the rock slope increases within a range of 20°-40°. A critical inclined angle of rock slope exists within a range of 20°-40°, and induces the largest axial anchor force in the combined retaining structure.

The Numerical Analysis on the Behaviour of Combined Sheet Pile in the Reclaimed Ground Mixed by Sandy Soil and Clayey Soil (사질토와 점성토가 혼재하는 해안 매립지반에서 조합형 Sheet Pile의 거동에 관한 해석적 연구)

  • Kim, Byung-Il;Kim, Young-Sun;Han, Sang-Jae;Park, Eon-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.3
    • /
    • pp.9-21
    • /
    • 2020
  • In this study, the design method of the combined sheet pile was considered in the coastal landfill where sandy and clayey soils are mixed, and the behavior in excavation was analyzed. It was confirmed from the elasto-plastic analysis that the predicted behavior of the temporary facilities of earth retaining differs according to the type of the combined sheet pile method (Built up, Interlocking, Welding) and the analysis method (soldier pile method, continuous wall method). In the case of sheet pile member force, the results of the continuous wall analysis method predicted the most conservative results. When the stress ratio (calculation/allowance) of each member was analyzed based on the maximum member force of the combined sheet pile method, the maximum value was obtained for bending moment in the side pile and combined stress in the case of the strut. As a result of finite element analysis, the member force of the side pile was the largest in the short-term effective stress analysis condition, while the compressive force of the strut was large in the consolidation analysis. When comparing the results of the elasto-plastic analysis and the finite element analysis, the shear force of the side pile and the axial force of the strut were greatly evaluated in the elasto-plastic analysis, and the bending moment of the side pile was the largest in the short-term effective stress condition of the finite element analysis. In addition, the displacement of the side pile was predicted to be greater in the finite element analysis than in the elasto-plastic analysis.