• Title/Summary/Keyword: combined energy

Search Result 1,935, Processing Time 0.026 seconds

Development of Optimal Operation Algorithm about CES Power Plant (CES 발전소의 최적운용 알고리즘 개발)

  • Kim, Yong-Ha;Park, Hwa-Yong;Kim, Eui-Gyeong;Woo, Sung-Min;Lee, Won-Ku
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.61-70
    • /
    • 2012
  • Recently due to the increasing of the importance on the green energy is getting higher by implementing EERS(Energy Efficiency Resource Standards) and NA(Negotiated Agreement) such as lacks of natural resources and The United Nations Framework Convention on Climate Change. And the most practical solution is CHP(Combined Heat and Power) which performs the best energy efficiency. This paper developed optimal operation mechanism of CES(Community Energy System) for enhancement of energy efficiency using CHP(Combined Heat and Power), PLB(Peak Load Boiler) and ACC(ACCumulator) capacities. This method optimally operated these capacities calculated the maximum profits by Dynamic Programing. Through the case studies, it is verified that the proposed algorithm of can evaluate availability.

Capacity Credit and Reasonable ESS Evaluation of Power System Including WTG combined with Battery Energy Storage System (에너지저장장치와 결합한 WTG를 포함하는 전력계통의 Capacity Credit 평가 및 ESS 적정규모 평가방안)

  • Oh, Ungjin;Lee, Yeonchan;Choi, Jaeseok;Lim, Jintaek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.923-933
    • /
    • 2016
  • This paper proposes a new method for evaluating Effective Load Carrying Capability(ELCC) and capacity credit(C.C.) of power system including Wind Turbine Generator(WTG) combined with Battery Energy Storage System(BESS). WTG can only generate electricity power when the fuel(wind) is available. Because of fluctuation of wind speed, WTG generates intermittent power. In view point of reliability of power system, intermittent power of WTG is similar with probabilistic characteristics based on power on-off due to mechanical availability of conventional generator. Therefore, high penetration of WTG will occur difficulties in power operation. The high penetration of numerous and large capacity WTG can make risk to power system adequacy, quality and stability. Therefore, the penetration of WTG is limited in the world. In recent, it is expected that BESS installed at wind farms may smooth the wind power fluctuation. This study develops a new method to assess how much is penetration of WTG able to extended when Wind Turbine Generator(WTG) is combined with Battery Energy Storage System(BESS). In this paper, the assessment equation of capacity credit of WTG combined with BESS is formulated newly. The simulation program, is called GNRL_ESS, is developed in this study. This paper demonstrates a various case studies of ELCC and capacity credit(C.C.) of power system containing WTG combined with BESS using model system as similar as Jeju island power system. The case studies demonstrate that not only reasonable BESS capacity for a WTG but also permissible penetration percent of WTG combined with BESS and reasonable WTG capacity for a BESS can be decided.

The Energy Absorption of Combined Structure Subjected to Axial Compression

  • J.W.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.4
    • /
    • pp.1-10
    • /
    • 1982
  • An experimental investigation on the energy absorption of two staged combined structures is presented, which deals with the plastic collapse test as a series of research on soft bow structure involved in a ship collision. The principle of arithmetic superposition of energy absorption is derived upon experimental analysis and based upon the characteristics of the energy absorptions of component structures. This relationship is related to the further approach toward the design of soft bow.

  • PDF

A Study on the Development of the Optimal Capacity Estimation Algorithm of Intergrated Energy Facilities Based on Operating Conditions (운용상태를 고려한 집단에너지설비의 최적용량 산정 알고리즘의 개발에 관한 연구)

  • Kim, Chang Sik;Song, Myung Ho;Yeom, Jee hoon;Shin, Jungyull
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.94-102
    • /
    • 2019
  • The purpose of this study is to propose a method for optimizing heat generation facilities to maximize revenue by investigating their operational status during times of maximum heat demand for district heating. Based on the derived result, this study also proposes a method for determining a given power plant's optimal equipment, such as combined heat and power plant(CHP), peak load boilers (PLB), heat accumulators, and so on, depending on heat demand and facility capacities. It also offers a guide for how to operate facilities more economically by considering the operational status of district heating companies.

A Study on the Optimization of New Renewable Energy Systems in Public-Purpose Facilities (공공용 업무시설의 신재생에너지시스템 최적화 연구)

  • Lee, Yong-Ho;Seo, Sang-Hyun;Cho, Young-Hum;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.95-104
    • /
    • 2013
  • This study set out to devise an optimized system to take into account life cycle cost(LCC) and ton of carbon dioxide($TCO_2$) by applying the weighted coefficient method(WCM) to "public-purpose" facility buildings according to the mandatory 5% and 11% of new renewable energy in total construction costs and anticipated energy consumption, respectively, based on the changes of the public obligation system. (1) System installation capacity is applied within the same new renewable energy facility investment according to the mandatory 5% of new renewable energy in total construction costs. Both LCC and $TCO_2$ recorded in the descending order of geothermal, solar, and photovoltaic energy. The geothermal energy systems tended to exhibit an excellent performance with the increasing installation capacity percentage. (2) Optimal systems include the geothermal energy(100%) system in the category of single systems, the solar energy(12%)+geothermal energy(88%) system in the category of 2-combined systems, and the photovoltaic energy(12%)+solar energy(12%)+geothermal energy(76%) system and the photovoltaic energy(12%)+solar energy(25%)+geothermal energy(63%) system in the category of 3-combined systems. (3) LCC was the highest in the descending order of photovoltaic, geothermal and solar energy due to the influences of each energy source's correction coefficient according to the mandatory 11% of new renewable energy in anticipated energy consumption. The greater installation capacity percentage photovoltaic energy had, the more excellent tendency was observed. $TCO_2$ recorded in the descending order of geothermal, photovoltaic and solar energy with the decreasing installation capacity of photovoltaic energy. The greater installation capacity percentage a geothermal energy system had, the more excellent tendency it demonstrated. (4) Optimal systems include the geothermal energy(100%) system in the category of single systems, the photovoltaic energy(62%)+geothermal energy(38%) system in the category of 2-combined systems, and the photovoltaic energy(50%)+solar energy(12%)+geothermal energy(38%) system and the photovoltaic energy(12%)+solar energy(12%)+geothermal energy(76%) system in the category of 3-combined systems.

Parametric study for buildings with combined displacement-dependent and velocity-dependent energy dissipation devices

  • Pong, W.S.;Tsai, C.S.;Chen, Ching-Shyang;Chen, Kuei-Chi
    • Structural Engineering and Mechanics
    • /
    • v.14 no.1
    • /
    • pp.85-98
    • /
    • 2002
  • The use of supplemental damping to dissipate seismic energy is one of the most economical and effective ways to mitigate the effects of earthquakes on structures. Both displacement-dependent and velocity-dependent devices dissipate earthquake-induced energy effectively. Combining displacement-dependent and velocity-dependent devices for seismic mitigation of structures minimizes the shortcomings of individual dampers, and is the most economical solution for seismic mitigation. However, there are few publications related to the optimum distributions of combined devices in a multiple-bay frame building. In this paper, the effectiveness of a building consisting of multiple bags equipped with combined displacement-dependent and velocity-dependent devices is investigated. A four-story building with six bays was selected as an example to examine the efficiency of the proposed combination methods. The parametric study shows that appropriate arrangements of different kinds of devices make the devices more efficient and economical.

Combined seismic and energy upgrading of existing reinforced concrete buildings using TRM jacketing and thermal insulation

  • Gkournelos, Panagiotis D.;Bournas, Dionysios A.;Triantafillou, Thanasis C.
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.625-639
    • /
    • 2019
  • The concept of the combined seismic and energy retrofitting of existing reinforced concrete (RC) buildings was examined in this paper through a number of case studies conducted on model buildings (simulating buildings of the '60s-'80s in southern Europe) constructed according to outdated design standards. Specifically, seismic and thermal analyses have been conducted prior to and after the application of selected retrofitting schemes, in order to quantify the positive effect that retrofitting could provide to RC buildings both in terms of their structural and energy performance. Advanced materials, namely the textile reinforced mortars (TRM), were used for providing seismic retrofitting by means of jacketing of masonry infills in RC frames. Moreover, following the application of the TRM jackets, thermal insulation materials were simultaneously provided to the RC building envelope, exploiting the fresh mortar used to bind the TRM jackets. In addition to the externally applied insulation material, all the fenestration elements (windows and doors) were replaced with new high energy efficiency ones. Afterwards, an economic measure, namely the expected annual loss (EAL) was used to evaluate the efficiency of each retrofitting method, but also to assess whether the combined seismic and energy retrofitting is economically feasible. From the results of this preliminary study, it was concluded that the selected seismic retrofitting technique can indeed enhance significantly the structural behaviour of an existing RC building and lower its EAL related to earthquake risks. Finally, it was found that the combined seismic and energy upgrading is economically more efficient than a sole energy or seismic retrofitting scenario for seismic areas of south Europe.

The Experimental Performance of Rectangular Tube Absorber PV/Thermal Combined Collector Module (사각튜브부착형 흡열판을 적용한 Unglazed PVT 복합모듈의 열적 전기적 성능분석)

  • Jeong, Seon-Ok;Chun, Jin-Aha;Kim, Jin-Hee;Kim, Jun-Tae;Cho, In-Soo;Nam, Seung-Baeg
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.87-92
    • /
    • 2011
  • The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A photovoltaic-thermal(PVT)module is a combination of PV module with a solar thermal collector which forms one device that converts solar radiation into electricity and heat simultaneously. The performance of the PV/Thermal combined collector module is directly influenced by solar radiation that also has an effect on PV module temperature. It is also has believe that the energy performance of PV/T collector is related to absorber design as well as PV module temperature. The existing study has been paid to the PV/Thermal combined collector module with circle tube absorbers. The aim of this study is to analyze the experimental performance of the PV/Thermal combined collector rectangular tube absorbers according to solar radiation. The experimental result show that the average thermal and electrical efficiencies of the PVT collector were 43% and14.81% respectively. Solar radiation is one of the most influential factors to determine the energy performance of PVT collector, but from a certain level of solar radiation the PVT collector receives on, its efficiencies began to decrease.

  • PDF

A Study on the Discontinuous Energy Ceneration System for Power Compensation (불연속 에너지 발생장치의 에너지 보상 시스템에 대한 연구)

  • Lee, Jeong-Il;Lim, Jung-Yeol;Kang, Byung-Bog;Cha, In-Su
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.133-138
    • /
    • 2002
  • The developments of the solar and the wind power energy are necessary since the future alternative energies that have no pollution and no limitation are restricted. Currently power generation system of MW scale has been developed, but it still has a few faults with the weather condition. In order to solve these existing problems, combined generation system of photovoltaic(400W) and wind power generation system(400W) was suggested. It combines wind power and solar energy to have the supporting effect from each other. However, since even combined generation system cannot always generate stable output with ever-changing weather condition, power compensation device that uses elastic energy of spiral spring to combined generation system was also added for the present study. In an experiment, when output of system gets lower than 12V(charging voltage), power was continuously supplied to load through the inverter by charging energy obtained from generating rotary energy of spiral spring operates in small scale generator.

  • PDF

Experimental Study on Combined Ocean Thermal Energy Conversion with Waste Heat of Power Plant

  • Jung, Hoon;Jo, Jongyoung;Chang, Junsung;Lee, Sanghyup
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.215-222
    • /
    • 2019
  • This work is experimental study of 10 kW specialized Combined Ocean Thermal Energy Conversion. We propose a C-OTEC technology that directly uses exhaust thermal energy from power station condensers to heat the working fluid (R134a), and tests the feasibility of such power station by designing, manufacturing, installing, and operating a 10 kW-pilot facility. Power generation status was monitored by using exhaust thermal energy from an existing power plant located on the east coast of the Korean peninsula, heat exchange with 300 kW of heat capacity, and a turbine, which can exceed enthalpy efficiency of 45%. Output of 8.5 kW at efficiency of 3.5% was monitored when the condenser temperature and seawater temperature are $29^{\circ}C$ and $7.5^{\circ}C$, respectively. The evaluation of the impact of large-capacity C-OTEC technology on power station confirmed the increased value of the technology on existing power generating equipment by improving output value and reducing hot waste water. Through the research result, the technical possibility of C-OTEC has been confirmed, and it is being conducted at 200 kW-class to gain economic feasibility. Based on the results, authors present an empirical study result on the 200 kW C-OTEC design and review the impact on power plant.