• 제목/요약/키워드: combined energy

검색결과 1,935건 처리시간 0.026초

Research Activity on Rocket-Ramjet Combined-cycle Engine in JAXA

  • Takegoshi, Masao;Kanda, Takeshi
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.460-468
    • /
    • 2008
  • Recent activities on the scramjet and rocket-ramjet combined-cycle engine of Japan Aerospace Exploration Agency(JAXA) are herein presented. The scramjet engines and combined-cycle engines have been studied in the world and JAXA has also studied such the engines experimentally, numerically and conceptually. Based on the studies, 2 to 3 m long, hydrogen-fueled engine models were designed and tested at the Ramjet Engine Test Facility(RJTF) and the High Enthalpy Shock Tunnel(HIEST). A scramjet engine model was tested in Mach 10 to 14 flight condition at HIEST. A 3 m long scramjet engine model was designed to reduce a dissociation energy loss in a high temperature condition. Drag reduction by a tangential injection and two ways of a transverse fuel injection were examined. Combustor model tests at three operating modes of the combined-cycle engine were conducted, demonstrating the combustor operation and producing data for the engine design at each mode. Aerodynamic engine model tests were conducted in a transonic wind tunnel, demonstrating the engine operation in the ejector-jet mode. A 3 m long combined-cycle engine model has been tested in the ejector-jet mode and the ramjet mode since March 2007. Carbon composite material was examined for application to the engines. Production of the cooling channel on a nickel alloy plate succeeded by the electro-chemical etching.

  • PDF

국내 열병합발전사업의 기술적 생산효율성 추정 및 사업구조 평가: 16개 집단에너지사업자에 대한 패널 확률프론티어모형(SFA) 분석 (Evaluation of Technical Production Efficiency and Business Structure of Domestic Combined Heat and Power (CHP) Operators: Panel Stochastic Frontier Model Analysis for 16 Collective Energy Operators)

  • 임형우;김재혁;신동현
    • 자원ㆍ환경경제연구
    • /
    • 제30권4호
    • /
    • pp.557-579
    • /
    • 2021
  • 집단에너지는 에너지전환의 중간단계이자, 분산전원으로서 전력구조에 미치는 영향이 크다. 하지만 최근 일부 집단에너지사업자의 수익성 악화로 인해 집단에너지사업의 문제가 대두되고 있다. 본 연구는 우리나라 집단에너지사업자의 기술적 생산효율성 추정을 통해, 주요 사업자의 기술적 생산효율성을 측정하였으며 이를 바탕으로 사업자의 수익구조 개선방안을 살펴보았다. 16개 집단에너지사업자의 2016~19년 세부 재무 및 생산 자료를 수집한 후, 패널 확률 프론티어모형을 이용하여 사업자들의 기술적 생산효율성을 추정하였다. 추정 결과, 증기공급병행, 대형 전기중심, 소규모 구역전기, 역송CHP 사업자 순으로 생산효율성이 높음을 확인하였다. 더 나아가 수익성 영향요인에 대해 살펴본 결과, 기술적 생산효율성은 전반적으로 수익성과 양(+)의 영향 관계를 가지나, 소규모 구역전기사업자와 같이 열 생산 비중이 높은 사업자는 수익성이 악화됨을 확인하였다. 이는 현재 열 판매 시장의 구조적 한계로 인한 현상이며, 수익성 개선을 위해서는 열 판매단가에 대한 조정이 필요함을 확인하였다.

에너지부문(部門) 정책분석(政策分析)을 위한 계량모형적(計量模型的) 접근(接近)에 관한 연구(硏究) - 에너지수급(需給) 및 산업구조개편연관분석(産業構造改編聠関分析) - (Study on the Application of Quantitative Economic Modeling for Energy Policy Analysis - Energy/Economy Interaction for Energy Demand/Supply Analysis and Industry Infrastructure Change -)

  • 김형욱;안병훈
    • 대한산업공학회지
    • /
    • 제8권1호
    • /
    • pp.40-60
    • /
    • 1982
  • Since the first oil embargo (1973), there have been developed many different types of energy-economy interaction models based upon various aspects of energy impact mechanism. We will propose to develop an integrated energy-economy interaction analysis system for less developed countries' energy policy analysis, especially for investment analysis toward constructing energy-saving industry infrastructure ; which is based on the motivation of combined energy models by John P. Weyant. This modeling system can cover the economic growth, inter-industry transactions including production features, and process analysis of energy sector in the total network scheme of general equilibrium, so that it can give many political implications as well as the modeling concept to be used for analyzing various political issues and making decisions related to national energy environment.

  • PDF

부유식 태양광-파력 복합발전 개념 및 원자력발전소 비상전원을 위한 응용 (A Buoyant Combined Solar-Wave Power Generation and Its Application for Emergency Power Supply of Nuclear Power Plant)

  • 차경호;김정택
    • 신재생에너지
    • /
    • 제7권4호
    • /
    • pp.37-41
    • /
    • 2011
  • This paper presents a Combined solar-wave Power Generation (CPG) concept that the CPG unit is maintained as buoyant at the level of sea water and it is also supported by a submerged tunnel, with the aim of supplying emergency electric power during the station blackout events of nuclear power plants. The CPG concept has been motivated from the 2011 Fukushima-Daiichi Accidents due to the loss of both offsite AC power and emergency diesel power caused by natural hazards such as earthquake and tsunami. The CPG is conceptualized by applying different types and different sites for emergency power generation, in order to reduce common cause failures of emergency power suppliers due to natural hazards. Thus, the CPG can provide a new mean for supplying emergency electric power during station blackout events of nuclear power plants. For this application, the CPG requirements are described with a typical configuration at the ocean side of a submerged tunnel.

Structure-Control Combined Design with Structure Intensity

  • PARK JUNG-HYEN;KIM SOON HO
    • 한국해양공학회지
    • /
    • 제17권5호
    • /
    • pp.57-65
    • /
    • 2003
  • This paper proposes an optimum design method of structural and control systems, using a 2-D truss structure as an example. The structure is subjected to initial static loads and disturbances. For the structure, a FEM model is formed. Using modal transformation, the equation of motion is transformed into modal coordinates, in order to decrease D.O.F. of the FEM model. To suppress the effect of the disturbances, the structure is controlled by an output feedback $H_{\infty}$ controller. The design variables of the combined optimal design of the control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H_{\infty}$ norm, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been perform. Through the consideration of structural weight and $H_{\infty}$ norm, an advantage of the combined optimum design of structural and control systems is shown. Moreover, since the performance index of control is almost nearly optimiz, we can acquire better design of structural strength.

액체식 Unglazed PVT 복합모듈의 성능실험연구 (An Experimental Study of a Water Type Unglazed PV/Thermal Combined Collector Module)

  • 김진희;강준구;김준태
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.184-189
    • /
    • 2008
  • The excess heat that is generated from PV modules can be removed and converted into useful thermal energy. A photovoltaic/thermal(PVT) module is a combination of photovoltaic module with a solar thermal collector, forming one device that converts solar radiation into electricity and heat simultaneously In general, two types of PVT can be distinguished: glass-covered PVT module, which produces high-temperature heat but has a slightly lower electrical yield, and uncovered PVT module, which produces relatively low-temperature heat but has a somewhat higher electrical performance. In this paper, the experimental performance of water type unglazed PVT combined module, analyzed. The electrical and thermal performance of the module were measured in outdoor conditions, and the results are analyzed. The results showed that the thermal efficiency of the PVT module was 27.05% average and its PV efficiency was about 11.85% average, both depending on solar radiation, inlet water temperature and ambient temperature.

  • PDF

Structure-Control Combined Design with Structure Intensity

  • Park, Jung-Hyen;Kim, Soon-Ho
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제6권1호
    • /
    • pp.60-68
    • /
    • 2003
  • This paper proposes an optimum design method of structural and control systems, using a 2-D truss structure as an example. The structure is subjected to initial static loads and disturbances. For the structure, a FEM model is formed. Using modal transformation, the equation of motion is transformed into modal coordinates, in order to decrease D.O.F. of the FEM model. To suppress the effect of the disturbances, the structure is controlled by an output feedback $H_{\infty}$ controller. The design variables of the combined optimal design of the control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H_{\infty}$ norm, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been perform. Through the consideration of structural weight and $H_{\infty}$ norm, an advantage of the combined optimum design of structural and control systems is shown. Moreover, since the performance index of control is almost nearly optimiz, we can acquire better design of structural strength.

  • PDF

An Experimental Study on the Characteristic of the Hot Water-Air Heating Generating System with a Solar Collector

  • Rokhman, Fatkhur;Hong, Boo-Pyo;You, Jin-Kwang;Yoon, Jung-In;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.360-363
    • /
    • 2012
  • A solar air heating has low efficiency compared with the solar water heating because the heat capacity of the air is small. The heat received by solar collector plate is not fully transferred to the air and then a part of them became the losses to the environment through conduction and convection process. This research is focusing on a design of better combined multi-purposed system suggested by us and aims to secure the more efficient solar energy utilization by combining the hot water and air heating system. The result in this paper has shown that the proposed design has better thermal performance than that of the common design. Furthermore, it was found that the performance of the combined air - water heating system increases the efficiency from 30% to 35%-40%.

  • PDF

유기랭킨사이클을 이용한 병렬 열병합 발전시스템의 열역학적 이론 성능 특성 (Theoretical Characteristics of Thermodynamic Performance of Combined Heat and Power Generation with Parallel Circuit using Organic Rankine Cycle)

  • 김경훈
    • 한국태양에너지학회 논문집
    • /
    • 제31권6호
    • /
    • pp.49-56
    • /
    • 2011
  • In this study a novel cogeneration system driven by low-temperature sources at a temperature level below $190^{\circ}C$ is investigated by first and second laws of thermodynamics. The system consists of Organic Rankine Cycle(ORC) and an additional heat generation as a parallel circuit. Seven working fluids of R143a, R22, R134a, R152a, $iC_4H_{10}$(isobutane), $C_4H_{10}$(butane), and R123a are considered in this work. Maximum mass flow rate of a working fluid relative to that of the source fluid and optimum turbine inlet pressure are considered to extract maximum power from the source. Results show that due to a combined heat and power generation, both the efficiencies by first and second laws can be significantly increased in comparison to a power generation, however, the second law efficiency is more resonable in the investigation of cogeneration systems. Results also show that the working fluid for the maximum system efficiency depends on the source temperature.

Effect of Low-Energy Electron Irradiation on DNA Damage by Cu2+ Ion

  • Noh, Hyung-Ah;Park, Yeunsoo;Cho, Hyuck
    • Journal of Radiation Protection and Research
    • /
    • 제42권1호
    • /
    • pp.63-68
    • /
    • 2017
  • Background: The combined effect of the low energy electron (LEE) irradiation and $Cu^{2+}$ ion on DNA damage was investigated. Materials and Methods: Lyophilized pBR322 plasmid DNA films with various concentrations (1-15 mM) of $Cu^{2+}$ ion were independently irradiated by monochromatic LEEs with 5 eV. The types of DNA damage, single strand break (SSB) and double strand break (DSB), were separated and quantified by gel electrophoresis. Results and Discussion: Without electron irradiation, DNA damage was slightly increased with increasing Cu ion concentration via Fenton reaction. LEE-induced DNA damage, with no Cu ion, was only 6.6% via dissociative electron attachment (DEA) process. However, DNA damage was significantly increased through the combined effect of LEE-irradiation and Cu ion, except around 9 mM Cu ion. The possible pathways of DNA damage for each of these different cases were suggested. Conclusion: The combined effect of LEE-irradiation and Cu ion is likely to cause increasing dissociation after elevated transient negative ion state, resulting in the enhanced DNA damage. For the decrease of DNA damage at around 9-mM Cu ion, it is assumed to be related to the structural stabilization due to DNA inter- and intra-crosslinks via Cu ion.