• 제목/요약/키워드: combination-based algorithms

검색결과 233건 처리시간 0.024초

색상 기반 회화 감성 추출 방법에 관한 연구 (A Study on Method for Extracting Emotion from Painting Based on Color)

  • 심현오;박성주;윤경현
    • 한국멀티미디어학회논문지
    • /
    • 제19권4호
    • /
    • pp.717-724
    • /
    • 2016
  • Paintings can evoke emotions in viewers. In this paper, we propose a method for extracting emotion from paintings by using the colors that comprise the paintings. For this, we generate color spectrum from input painting and compare the color spectrum and color combination for finding most similarity color combination. The found color combinations are mapped with emotional keywords. Thus, we extract emotional keyword as the emotion evoked by the painting. Also, we vary the form of algorithms for matching color spectrum and color combinations and extract and compare results by using each algorithm.

Differential Evolution with Multi-strategies based Soft Island Model

  • Tan, Xujie;Shin, Seong-Yoon
    • Journal of information and communication convergence engineering
    • /
    • 제17권4호
    • /
    • pp.261-266
    • /
    • 2019
  • Differential evolution (DE) is an uncomplicated and serviceable developmental algorithm. Nevertheless, its execution depends on strategies and regulating structures. The combination of several strategies between subpopulations helps to stabilize the probing on DE. In this paper, we propose a unique k-mean soft island model DE(KSDE) algorithm which maintains population diversity through soft island model (SIM). A combination of various approaches, called KSDE, intended for migrating the subpopulation information through SIM is developed in this study. First, the population is divided into k subpopulations using the k-means clustering algorithm. Second, the mutation pattern is singled randomly from a strategy pool. Third, the subpopulation information is migrated using SIM. The performance of KSDE was analyzed using 13 benchmark indices and compared with those of high-technology DE variants. The results demonstrate the efficiency and suitability of the KSDE system, and confirm that KSDE is a cost-effective algorithm compared with four other DE algorithms.

설명기반 유전자알고리즘을 활용한 경영성과 데이터베이스이 데이터마이닝 (Data-Mining in Business Performance Database Using Explanation-Based Genetic Algorithms)

  • 조성훈;정민용
    • 경영과학
    • /
    • 제18권1호
    • /
    • pp.135-145
    • /
    • 2001
  • In recent environment of dynamic management, there is growing recognition that information and knowledge management systems are essential for efficient/effective decision making by CEO. To cope with this situation, we suggest the Data-Miming scheme as a key component of integrated information and knowledge management system. The proposed system measures business performance by considering both VA(Value-Added), which represents stakeholder’s point of view and EVA (Economic Value-Added), which represents shareholder’s point of view. To mine the new information & Knowledge discovery, we applied the improved genetic algorithms that consider predictability, understandability (lucidity) and reasonability factors simultaneously, we use a linear combination model for GAs learning structure. Although this model’s predictability will be more decreased than non-linear model, this model can increase the knowledge’s understandability that is meaning of induced values. Moreover, we introduce a random variable scheme based on normal distribution for initial chromosomes in GAs, so we can expect to increase the knowledge’s reasonability that is degree of expert’s acceptability. the random variable scheme based on normal distribution uses statistical correlation/determination coefficient that is calculated with training data. To demonstrate the performance of the system, we conducted a case study using financial data of Korean automobile industry over 16 years from 1981 to 1996, which is taken from database of KISFAS (Korea Investors Services Financial Analysis System).

  • PDF

생리적 내재반응 및 얼굴표정 간 확률 관계 모델 기반의 감정인식 시스템에 관한 연구 (A Study on Emotion Recognition Systems based on the Probabilistic Relational Model Between Facial Expressions and Physiological Responses)

  • 고광은;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.513-519
    • /
    • 2013
  • The current vision-based approaches for emotion recognition, such as facial expression analysis, have many technical limitations in real circumstances, and are not suitable for applications that use them solely in practical environments. In this paper, we propose an approach for emotion recognition by combining extrinsic representations and intrinsic activities among the natural responses of humans which are given specific imuli for inducing emotional states. The intrinsic activities can be used to compensate the uncertainty of extrinsic representations of emotional states. This combination is done by using PRMs (Probabilistic Relational Models) which are extent version of bayesian networks and are learned by greedy-search algorithms and expectation-maximization algorithms. Previous research of facial expression-related extrinsic emotion features and physiological signal-based intrinsic emotion features are combined into the attributes of the PRMs in the emotion recognition domain. The maximum likelihood estimation with the given dependency structure and estimated parameter set is used to classify the label of the target emotional states.

Analysis of Database Referenced Navigation by the Combination of Heterogeneous Geophysical Data and Algorithms

  • Lee, Jisun;Kwon, Jay Hyoun
    • 한국측량학회지
    • /
    • 제34권4호
    • /
    • pp.373-382
    • /
    • 2016
  • In this study, an EKF (Extended Kalman Filter) based database reference navigation using both gravity gradient and terrain data was performed to complement the weakness of using only one type of geophysical DB (Database). Furthermore, a new algorithm which combines the EKF and profile matching was developed to improve the stability and accuracy of the positioning. On the basis of simulations, it was found that the overall navigation performance was improved by the combination of geophysical DBs except the two trajectories in which the divergence of TRN (Terrain Referenced Navigation) occurred. To solve the divergence problem, the profile matching algorithm using the terrain data is combined with the EKF. The results show that all trajectories generate the stable performance with positioning error ranges between 14m to 23m although not all trajectories positioning accuracy is improved. The average positioning error from the combined algorithm for all nine trajectories is about 18 m. For further study, a development of a switching geophysical DB or algorithm between the EKF and the profile matching to improve the navigation performance is suggested.

Parallel Multithreaded Processing for Data Set Summarization on Multicore CPUs

  • Ordonez, Carlos;Navas, Mario;Garcia-Alvarado, Carlos
    • Journal of Computing Science and Engineering
    • /
    • 제5권2호
    • /
    • pp.111-120
    • /
    • 2011
  • Data mining algorithms should exploit new hardware technologies to accelerate computations. Such goal is difficult to achieve in database management system (DBMS) due to its complex internal subsystems and because data mining numeric computations of large data sets are difficult to optimize. This paper explores taking advantage of existing multithreaded capabilities of multicore CPUs as well as caching in RAM memory to efficiently compute summaries of a large data set, a fundamental data mining problem. We introduce parallel algorithms working on multiple threads, which overcome the row aggregation processing bottleneck of accessing secondary storage, while maintaining linear time complexity with respect to data set size. Our proposal is based on a combination of table scans and parallel multithreaded processing among multiple cores in the CPU. We introduce several database-style and hardware-level optimizations: caching row blocks of the input table, managing available RAM memory, interleaving I/O and CPU processing, as well as tuning the number of working threads. We experimentally benchmark our algorithms with large data sets on a DBMS running on a computer with a multicore CPU. We show that our algorithms outperform existing DBMS mechanisms in computing aggregations of multidimensional data summaries, especially as dimensionality grows. Furthermore, we show that local memory allocation (RAM block size) does not have a significant impact when the thread management algorithm distributes the workload among a fixed number of threads. Our proposal is unique in the sense that we do not modify or require access to the DBMS source code, but instead, we extend the DBMS with analytic functionality by developing User-Defined Functions.

다중 머신러닝 알고리즘을 이용한 악성 URL 예측 시스템 설계 및 구현 (Design and Implementation of Malicious URL Prediction System based on Multiple Machine Learning Algorithms)

  • 강홍구;신삼신;김대엽;박순태
    • 한국멀티미디어학회논문지
    • /
    • 제23권11호
    • /
    • pp.1396-1405
    • /
    • 2020
  • Cyber threats such as forced personal information collection and distribution of malicious codes using malicious URLs continue to occur. In order to cope with such cyber threats, a security technologies that quickly detects malicious URLs and prevents damage are required. In a web environment, malicious URLs have various forms and are created and deleted from time to time, so there is a limit to the response as a method of detecting or filtering by signature matching. Recently, researches on detecting and predicting malicious URLs using machine learning techniques have been actively conducted. Existing studies have proposed various features and machine learning algorithms for predicting malicious URLs, but most of them are only suggesting specialized algorithms by supplementing features and preprocessing, so it is difficult to sufficiently reflect the strengths of various machine learning algorithms. In this paper, a system for predicting malicious URLs using multiple machine learning algorithms was proposed, and an experiment was performed to combine the prediction results of multiple machine learning models to increase the accuracy of predicting malicious URLs. Through experiments, it was proved that the combination of multiple models is useful in improving the prediction performance compared to a single model.

Damage detection in structural beam elements using hybrid neuro fuzzy systems

  • Aydin, Kamil;Kisi, Ozgur
    • Smart Structures and Systems
    • /
    • 제16권6호
    • /
    • pp.1107-1132
    • /
    • 2015
  • A damage detection algorithm based on neuro fuzzy hybrid system is presented in this study for location and severity predictions of cracks in beam-like structures. A combination of eigenfrequencies and rotation deviation curves are utilized as input to the soft computing technique. Both single and multiple damage cases are considered. Theoretical expressions leading to modal properties of damaged beam elements are provided. The beam formulation is based on Euler-Bernoulli theory. The cracked section of beam is simulated employing discrete spring model whose compliance is computed from stress intensity factors of fracture mechanics. A hybrid neuro fuzzy technique is utilized to solve the inverse problem of crack identification. Two different neuro fuzzy systems including grid partitioning (GP) and subtractive clustering (SC) are investigated for the highlighted problem. Several error metrics are utilized for evaluating the accuracy of the hybrid algorithms. The study is the first in terms of 1) using the two models of neuro fuzzy systems in crack detection and 2) considering multiple damages in beam elements employing the fused neuro fuzzy procedures. At the end of the study, the developed hybrid models are tested by utilizing the noise-contaminated data. Considering the robustness of the models, they can be employed as damage identification algorithms in health monitoring of beam-like structures.

제너러티브 아트(Generative Art)의 시각적 속성이 반영된 패션디자인 분석 (Analysis of Fashion Design Reflected Visual Properties of the Generative Art)

  • 김동옥;최정화
    • 한국의류학회지
    • /
    • 제41권5호
    • /
    • pp.825-839
    • /
    • 2017
  • Generative Art (also called as the art of the algorithm) creates unexpected results, moving autonomously according to rules or algorithms. The evolution of digital media in art, which tries to seek novelty, increases the possibility of new artistic fields; subsequently, this study establishes the basis for new design approaches by analyzing visual cases of Generative Art that have emerged since the 20th century and characteristics expressed on fashion. For the methodology, the study analyzes fashion designs that have emerged since 2000, based on theoretical research that includes literature and research papers relating to Generative Art. According to the study, expression characteristics shown in fashion, based on visual properties of Generative Art, are as follows. First, abstract randomness is expressed with unexpected coincidental forms using movements of a creator and properties of materials as variables in accordance to rules or algorithms. Second, endlessly repeated pattern imitation expresses an emergent shape by endless repetition created by a modular system using rules or 3D printing using a computer algorithm. Third, the systematic variability expresses constantly changing images with a combination of system and digital media by a wearing method. It is expected that design by algorithm becomes a significant method in producing other creative ideas and expressions in modern fashion.

Pile bearing capacity prediction in cold regions using a combination of ANN with metaheuristic algorithms

  • Zhou Jingting;Hossein Moayedi;Marieh Fatahizadeh;Narges Varamini
    • Steel and Composite Structures
    • /
    • 제51권4호
    • /
    • pp.417-440
    • /
    • 2024
  • Artificial neural networks (ANN) have been the focus of several studies when it comes to evaluating the pile's bearing capacity. Nonetheless, the principal drawbacks of employing this method are the sluggish rate of convergence and the constraints of ANN in locating global minima. The current work aimed to build four ANN-based prediction models enhanced with methods from the black hole algorithm (BHA), league championship algorithm (LCA), shuffled complex evolution (SCE), and symbiotic organisms search (SOS) to estimate the carrying capacity of piles in cold climates. To provide the crucial dataset required to build the model, fifty-eight concrete pile experiments were conducted. The pile geometrical properties, internal friction angle 𝛗 shaft, internal friction angle 𝛗 tip, pile length, pile area, and vertical effective stress were established as the network inputs, and the BHA, LCA, SCE, and SOS-based ANN models were set up to provide the pile bearing capacity as the output. Following a sensitivity analysis to determine the optimal BHA, LCA, SCE, and SOS parameters and a train and test procedure to determine the optimal network architecture or the number of hidden nodes, the best prediction approach was selected. The outcomes show a good agreement between the measured bearing capabilities and the pile bearing capacities forecasted by SCE-MLP. The testing dataset's respective mean square error and coefficient of determination, which are 0.91846 and 391.1539, indicate that using the SCE-MLP approach as a practical, efficient, and highly reliable technique to forecast the pile's bearing capacity is advantageous.