• 제목/요약/키워드: combination-based algorithms

검색결과 233건 처리시간 0.025초

The ensemble approach in comparison with the diverse feature selection techniques for estimating NPPs parameters using the different learning algorithms of the feed-forward neural network

  • Moshkbar-Bakhshayesh, Khalil
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3944-3951
    • /
    • 2021
  • Several reasons such as no free lunch theorem indicate that there is not a universal Feature selection (FS) technique that outperforms other ones. Moreover, some approaches such as using synthetic dataset, in presence of large number of FS techniques, are very tedious and time consuming task. In this study to tackle the issue of dependency of estimation accuracy on the selected FS technique, a methodology based on the heterogeneous ensemble is proposed. The performance of the major learning algorithms of neural network (i.e. the FFNN-BR, the FFNN-LM) in combination with the diverse FS techniques (i.e. the NCA, the F-test, the Kendall's tau, the Pearson, the Spearman, and the Relief) and different combination techniques of the heterogeneous ensemble (i.e. the Min, the Median, the Arithmetic mean, and the Geometric mean) are considered. The target parameters/transients of Bushehr nuclear power plant (BNPP) are examined as the case study. The results show that the Min combination technique gives the more accurate estimation. Therefore, if the number of FS techniques is m and the number of learning algorithms is n, by the heterogeneous ensemble, the search space for acceptable estimation of the target parameters may be reduced from n × m to n × 1. The proposed methodology gives a simple and practical approach for more reliable and more accurate estimation of the target parameters compared to the methods such as the use of synthetic dataset or trial and error methods.

ASVMRT: Materialized View Selection Algorithm in Data Warehouse

  • Yang, Jin-Hyuk;Chung, In-Jeong
    • Journal of Information Processing Systems
    • /
    • 제2권2호
    • /
    • pp.67-75
    • /
    • 2006
  • In order to acquire a precise and quick response to an analytical query, proper selection of the views to materialize in the data warehouse is crucial. In traditional view selection algorithms, all relations are considered for selection as materialized views. However, materializing all relations rather than a part results in much worse performance in terms of time and space costs. Therefore, we present an improved algorithm for selection of views to materialize using the clustering method to overcome the problem resulting from conventional view selection algorithms. In the presented algorithm, ASVMRT (Algorithm for Selection of Views to Materialize using Reduced Table), we first generate reduced tables in the data warehouse using clustering based on attribute-values density, and then we consider the combination of reduced tables as materialized views instead of a combination of the original base relations. For the justification of the proposed algorithm, we reveal the experimental results in which both time and space costs are approximately 1.8 times better than conventional algorithms.

요소결합을 통한 파워트레인 시뮬레이션 소프트웨어 (II): 시스템 자동결합 모듈 개발 (Powerflow Simulation Software of the Automotive Powertrain through the Combination of the Components (II): Development of the Automatic System Generation Module)

  • 이승종;서정민
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.52-59
    • /
    • 2004
  • In this paper, the automatic system generation algorithm based on the element combination algorithm discussed in the first part of this paper for designing an arbitrary type of the automatic transmissions is proposed. The powertrain design software using these algorithms is developed. This automotive powertrain design software with user-friendly graphic user interface has two main modules. The first module, the automatic power flow generation module, is already discussed in the previous paper. The second module dealing with the automatic system generation algorithm is discussed in this paper. The power-flow simulation software fur the arbitrary type of powertrain is then developed. The simulation and experimental results of the vehicle equipped with two planetary gear type automatic transmission are compared to validate the proposed algorithms and developed software. The simulation results demonstrate the good agreement with the experimental results.

Create a hybrid algorithm by combining Hill and Advanced Encryption Standard Algorithms to Enhance Efficiency of RGB Image Encryption

  • Rania A. Tabeidi;Hanaa F. Morse;Samia M. Masaad;Reem H. Al-shammari;Dalia M. Alsaffar
    • International Journal of Computer Science & Network Security
    • /
    • 제23권10호
    • /
    • pp.129-134
    • /
    • 2023
  • The greatest challenge of this century is the protection of stored and transmitted data over the network. This paper provides a new hybrid algorithm designed based on combination algorithms, in the proposed algorithm combined with Hill and the Advanced Encryption Standard Algorithms, to increase the efficiency of color image encryption and increase the sensitivity of the key to protect the RGB image from Keyes attackers. The proposed algorithm has proven its efficiency in encryption of color images with high security and countering attacks. The strength and efficiency of combination the Hill Chipper and Advanced Encryption Standard Algorithms tested by statical analysis for RGB images histogram and correlation of RGB images before and after encryption using hill cipher and proposed algorithm and also analysis of the secret key and key space to protect the RGB image from Brute force attack. The result of combining Hill and Advanced Encryption Standard Algorithm achieved the ability to cope statistically

유전자 알고리즘을 이용한 파라미터 추정모드기반 하이브리드 퍼지 제어기의 설계 (The Design of Hybrid Fuzzy Controller Based on Parameter Estimation Mode Using Genetic Algorithms)

  • 이대근;오성권;장성환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.228-231
    • /
    • 2000
  • A hybrid fuzzy controller by means of the genetic algorithms is presented. The control input for the system in the HFC is a convex combination of the FLC's output in transient state and PlD's output in steady state by a fuzzy variable. The HFC combined a PID controller with a fuzzy controller concurrently produces the better output performance than any other controller. A auto-tuning algorithms is presented to automatically improve the performance of hybrid fuzzy controller using genetic algorithms. The algorithms estimates automatical Iy the optimal values of scaling factors, PID parameters and membership function parameters of fuzzy control rules. Especially, in order to auto-tune scaling factors and PID parameters of HFC using GA three kinds of estimation modes are effectively utilized. The HFCs are applied to the second process with time-delay. Computer simulations are conducted at step input and the performances of systems are evaluated and also discussed in ITAE(Integral of the Time multiplied by the Absolute value of Error ) and other ways.

  • PDF

A Parallel Algorithm for Image Segmentation on Mesh-connected MIMD System

  • Jeon, Byeong-Moon;Jeong, Chang-Sung
    • 한국산업정보학회논문지
    • /
    • 제3권1호
    • /
    • pp.258-268
    • /
    • 1998
  • This paper presents two sequential advanced split and merge algorithms and a parallel image segmentation algorithm based on them. First, the two advanced methods are obtained from the combination of edge detection and classic split and merge to solve the inherent problems of the classical method. Besides, the parallel image segmentation algorithm on mesh-connected MIMD system considers three types in the merge stage to reduce the communication overhead between processors, such as intraprocessor merge, interprocessor with boundary merge, and interprocessor without boundary merge. Finally , we prove that the proposed algorithms achieve the improved performance by implementing them.

물리 기반 메터리얼을 기반으로 하는 절차적 생성 방식의 텍스쳐링에 관한 연구 (A Study on Texturing of Procedural Generation of based on Physically Based Materials)

  • 이영헌
    • Journal of Information Technology Applications and Management
    • /
    • 제30권6호
    • /
    • pp.143-155
    • /
    • 2023
  • Procedural generation methods based on physical-based materials generate data by algorithms rather than manual through combinations with artist-generated assets based on computer-generated randomness algorithms. For this reason, the procedural generation method is mainly used to produce textures of 3D models in the field of computer graphics because it is easy to obtain the desired quality with little data. This study is a study on physical-based materials and procedural generation methods based on them. Physical-based materials are divided into Metallic/Roughness workflows and Specific/Glossiness workflows. These two methods produce the same results, which are more accurate based on the law of conservation of energy. The procedural generation method allows a natural texture to be obtained very quickly by texturing through a combination of a computer-generated random algorithm and an artist-generated asset based on various maps.

Advanced insider threat detection model to apply periodic work atmosphere

  • Oh, Junhyoung;Kim, Tae Ho;Lee, Kyung Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권3호
    • /
    • pp.1722-1737
    • /
    • 2019
  • We developed an insider threat detection model to be used by organizations that repeat tasks at regular intervals. The model identifies the best combination of different feature selection algorithms, unsupervised learning algorithms, and standard scores. We derive a model specifically optimized for the organization by evaluating each combination in terms of accuracy, AUC (Area Under the Curve), and TPR (True Positive Rate). In order to validate this model, a four-year log was applied to the system handling sensitive information from public institutions. In the research target system, the user log was analyzed monthly based on the fact that the business process is processed at a cycle of one year, and the roles are determined for each person in charge. In order to classify the behavior of a user as abnormal, the standard scores of each organization were calculated and classified as abnormal when they exceeded certain thresholds. Using this method, we proposed an optimized model for the organization and verified it.

Partial Transmit Sequence Optimization Using Improved Harmony Search Algorithm for PAPR Reduction in OFDM

  • Singh, Mangal;Patra, Sarat Kumar
    • ETRI Journal
    • /
    • 제39권6호
    • /
    • pp.782-793
    • /
    • 2017
  • This paper considers the use of the Partial Transmit Sequence (PTS) technique to reduce the Peak-to-Average Power Ratio (PAPR) of an Orthogonal Frequency Division Multiplexing signal in wireless communication systems. Search complexity is very high in the traditional PTS scheme because it involves an extensive random search over all combinations of allowed phase vectors, and it increases exponentially with the number of phase vectors. In this paper, a suboptimal metaheuristic algorithm for phase optimization based on an improved harmony search (IHS) is applied to explore the optimal combination of phase vectors that provides improved performance compared with existing evolutionary algorithms such as the harmony search algorithm and firefly algorithm. IHS enhances the accuracy and convergence rate of the conventional algorithms with very few parameters to adjust. Simulation results show that an improved harmony search-based PTS algorithm can achieve a significant reduction in PAPR using a simple network structure compared with conventional algorithms.

유전자 알고리즘을 이용한 제어파라미터 추정모드기반 HFC (Hybrid Fuzzy Controller Based on Control Parameter Estimation Mode Using Genetic Algorithms)

  • 이대근;오성권;장성환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2545-2547
    • /
    • 2000
  • In this paper, a hybrid fuzzy controller using genetic algorithm based on parameter estimation mode to obtain optimal control parameter is presented. First, The control input for the system in the HFC is a convex combination of the FLC's output in transient state and PID's output in steady state by a fuzzy variable, namely, membership function of weighting coefficient. Second, genetic algorithms is presented to automatically improve the performance of hybrid fuzzy controller utilizing the conventional methods for finding PID parameters and estimation mode of scaling factor. The algorithms estimates automatically the optimal values of scaling factors, PID parameters and membership function parameters of fuzzy control rules according to the rate of change and limitation condition of control input. Computer simulations are conducted to evaluate the performance of proposed hybrid fuzzy controller. ITAE, overshoot and rising time are used as a performance index of controller.

  • PDF