• Title/Summary/Keyword: column-switching HPLC

Search Result 43, Processing Time 0.024 seconds

Development and Validation of On-line Column Switching HPLC-MS/MS Method for 10 Phthalate Metabolites in Human Urine (LC-MS/MS를 이용한 인체시료 중 프탈레이트 대사체 동시분석법 확립)

  • Hong, Soon-Keun;Nam, Hye-Seon;Jung, Ki-Kyung;Kang, Il-Hyun;Kim, Tae-Sung;Cho, Sang-Eun;Jung, Su-Hee;Lee, Jang-Woo;Kim, Jun-Cheol;Kho, Young-Lim;Kang, Tae-Seok
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.6
    • /
    • pp.510-517
    • /
    • 2010
  • Phthalates, such as di (2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) have been proved to be teratogenics and endocrine disruptors, metabolized rapidly and excreted in the urine. In this study, a simultaneous analytical method for 10 phthalate metabolites, MnBP, MiBP, MBzP, MCHP, MEHP, MEHHP, MEOHP, MnOP, MiNP and MiDP, in human urines, based on switching system with on-line pretreatment column using HPLC-MS/MS has been developed. This method was validated according to the guideline of bioanalytical method validation of National Institute of Toxicological Research. Limits of detection range between 0.2 and 0.9 ng/ml for 10 phthalate metabolites. The calibration curves showed linearity in the range 0.997~0.999, and the results of the intra- and inter-day validations were in the range from 0.4 to 14.7% RSD and from 0.3 to 9.4% RSD, respectively. Recoveries of phthalate metabolites varied from 87.0 to 116.1%. This analytical method showed high accuracy and stable precision for all metabolites, and seems to be suitable for biomonitoring of phthalates in human urine.

Determination of Pesticide Residues in Water using On-line SPE-HPLC Coupling System

  • Lee, Dai Woon;Lee, Sung Kwang;Park, Young Hun;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.539-543
    • /
    • 1995
  • The on-line SPE-HPLC coupling system was developed for the efficient separation and determination of trace pesticides, such as phenoxyacetic acids and esters, and triazines in aqueous solutions. By using the developed SPE-HPLC on-line system, the band broadening usually observed in single precolumn switching mode was greatly reduced, consequently, the quantitative determination of trace pesticides could be achieved, Besides, since most of the analytes preconcentrated by SPE column could be injected directly into HPLC system, the limit of detection can be improved down to ppt level.

  • PDF

Determination of triflusal in human plasma by high performance liquid chromatography with automated column switching system

  • Park, Jeong-Sook;Park, Kyong-Mi;Kim, Chong-Kook
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.401.2-401.2
    • /
    • 2002
  • To study the pharmacokinetics of triflusal, more reliable and sensitive analytical method of triflusal in plasma sample was developed. Analytical method of triflusal in human plasma was developed using semi-microbore HPLC equipped with automated column switching system. p- Toluic acid, which is structural analogue of triflusal. was used as an internal standard and 2 M HCI was employed as a stabilizer. The load phase and mobile phase were prepared using acetonitrile and 20 mM $KH_{2}PO_{4}$ with the volume ratios of 10:90 (pH 2.5) and 43:57 (pH 2.3), respectively. (omitted)

  • PDF

Development of Vitamin D Determination in Infant Formula by Column-Switching HPLC with UV Detector

  • Ko, Jin-Hyouk;Kwak, Byung-Man;Ahn, Jang-Hyuk;Shim, Sung-Lye;Kim, Kyong-Su;Yoon, Tae-Hyung;Leem, Dong-Gil;Jeong, Ja-Young
    • Food Science of Animal Resources
    • /
    • v.32 no.5
    • /
    • pp.571-577
    • /
    • 2012
  • This study was carried out to develop an analytical method for the determination of vitamin D in infant formula. Vitamin D was determined by column-switching high-performance liquid chromatography (HPLC) equipped with a reversed phase column and UV detector after saponification and extraction of the formula with an organic solvent. A preseparation column ($C_8$), focusing column ($C_{18}$), analytical column ($C_{18}$) and UV-Vis detector (254 nm) were used. The limits of detection (LOD) and the limits of quantification (LOQ) for vitamin D were estimated to be $1.51{\mu}g/kg$ and $4.95{\mu}g/kg$, respectively. The linearity, recovery, precision and accuracy of the analytical method for vitamin D were evaluated through the application of a SRM (Standard Reference Material) 1846 (National Institute of Standard & Technology, USA). The linearity of this method was calculated with a value of the coefficient of determination ($r^2$) ${\geq}0.9999$. The recovery of vitamin D was $85.20{\pm}3.00%$. The intra-assay precision for vitamin D was between $1.68{\pm}0.03%$ and $5.75{\pm}0.33%$, and the inter-assay precision for vitamin D ranged from $1.73{\pm}0.03%$ to $2.96{\pm}0.09%$. The intra-assay accuracy for vitamin D was between $100.03{\pm}2.77%$ and $102.01{\pm}0.59%$, and the inter-assay accuracy for vitamin D ranged from $99.00{\pm}1.53%$ to $102.01{\pm}3.04%$. The proposed method is optimal for the separation and quantification of vitamin D from infant formula.

Simultaneous Determination of Polycyclic Aromatic Hydrocarbons and Their Nitro-derivatives in Airborne Particulates by Using Two-dimensional High-performance Liquid Chromatography with On-line Reduction and Fluorescence Detection

  • Boongla, Yaowatat;Orakij, Walaiporn;Nagaoka, Yuuki;Tang, Ning;Hayakawa, Kazuichi;Toriba, Akira
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.283-299
    • /
    • 2017
  • An analytical method using high-performance liquid chromatography (HPLC) with fluorescence (FL) detection was developed for simultaneously analyzing 10 polycyclic aromatic hydrocarbons (PAHs) and 18 nitro-derivatives of PAHs (NPAHs). The two-dimensional HPLC system consists of an on-line clean-up and reduction for NPAHs in the 1st dimension, and separation of the PAHs and the reduced NPAHs and their FL detection in the 2nd dimension after column-switching. To identify an ideal clean-up column for removing sample matrix that may interfere with detection of the analytes, the characteristics of 8 reversed-phase columns were evaluated. The nitrophenylethyl (NPE)-bonded silica column was selected because of its shorter elution band and larger retention factors of the analytes due to strong dipole-dipole interactions. The amino-substituted PAHs (reduced NPAHs), PAHs and deuterated internal standards were separated on polymeric octadecyl-bonded silica (ODS) columns and by dual-channel detection within 120 min including clean-up and reduction steps. The limits of detection were 0.1-9.2 pg per injection for PAHs and 0.1-140 pg per injection for NPAHs. For validation, the method was applied to analyze crude extracts of fine particulate matter ($PM_{2.5}$) samples and achieved good analytical precision and accuracy. Moreover, the standard reference material (SRM1649b, urban dust) was analyzed by this method and the observed concentrations of PAHs and NPAHs were similar to those in previous reports. Thus, the method developed here-in has the potential to become a standard HPLC-based method, especially for NPAHs.

Determination of Vitamin B12 and Biotin in Foods for Special Dietary Uses with Immunoaffinity Column (면역친화성 컬럼을 이용한 특수용도식품 중 비타민B12와 비오틴 분석 연구)

  • Oh, Bo-Young;Ye, Min-Ji;Hu, Soo-Jung;Lee, Hye-Young;Bang, Soo-Jin
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.3
    • /
    • pp.252-260
    • /
    • 2020
  • This study was conducted to improve the standard method for vitamin B12 and biotin contained in foods for special dietary uses to ensure the specificity of the complex matrix properties of foods. For the food code, the test method was improved to determine vitamin B12 and biotin by high-performance liquid chromatography (HPLC)-UV using column-switching after concentration using immunoaffinity column. The immunoaffinity columns contain a gel suspension of monoclonal antibody specific to the vitamin of interest so that it can be used to concentrate the vitamin B12 and biotin and remove interferences from the food extracts. Moreover, validation of advanced new methods was carried out to support the suitability of the proposed analytical procedure (specificity, linearity, detection limits (LOD), quantitative limits (LOQ), accuracy, and precision). The improved analytical method is being used to monitor relevant food items on sale. The results of this study showed that the new analytical method is suitable and appropriate for managing food intended for special dietary uses.

Bioequivalence Test of Triflusal Capsules (트리플루살 캅셀의 생물학적 동등성 평가)

  • 박정숙;이미경;박경미;김진기;임수정;최성희;민경아;김종국
    • Biomolecules & Therapeutics
    • /
    • v.9 no.4
    • /
    • pp.291-297
    • /
    • 2001
  • The bioequivalence of two triflusal products was evaluated with 20 healthy volunteers following single oral dose according to the guidelines of Korea Food and Drug Administration (KFDA). Trisa $l^{R}$ capsule (Whanin Pharm. Corp., Korea) and Disgre $n^{R}$ capsule (Myung-In Pharm. Corp., Korea) were used as test product and reference product, respectively. Both products contain 300 mg of trifusal. One capsule of test product or reference product was orally administered to the volunteers, respectively, by randomized two period crossover study (2$\times$2 Latin square method). Blood samples were taken at predetermined time intervals for 4 hours and the determination of trifusal was accomplished using semi-microbore HPLC equipped with automated column switching system. The analytical method with HPLC was validated according to the Bioanalytic Method Validation guideline by F7A prior to determining the plasma samples. The pharmacokinetic parameters (AU $C_{0-4h}$ $C_{max}$ and $T_{max}$) were calculated and ANOVA test was utilized for statistical analysis of parameters. As a result of the assay validation, the limit of quantification of trifusal in human plasma by current assay procedure was 50 ng/ml using 500 $\mu$l of plasma. The accuracy of the assay was from 97.76% to 116.51% while the intra-day and inter-day coefficient of variation of the same concentration range was less than 15%. Average drug concentration at the designated time intervals and pharmacokinetic parameters calculated were not significantly different between two products (p>0.05). The difference of mean AU $C_{olongrightarrow4hr}$, $C_{max}$, and $T_{max}$ between the two products (2.92, 4.39, and -2.44%, respectively) were less than 20%. The power (1-$\beta$) and treatment difference ($\Delta$) for AU $C_{olongrightarrow4hr}$ and $C_{max}$ were more than 0.8 and less than 0.2, respectively. Although the power for $T_{max}$ was under 0.8, $T_{max}$ of the two products was not significantly different from each other (p>0.05). These results satisfied the criteria of KFDA guideline for bioequivalence, indicating the two products of triflusal were bioequivalent.quivalent.ent.ent.

  • PDF

Development of HPLC Determination Method for Trace Levels of 1-, 2-Nitropyrenes and 2-Nitrofluoranthene in Airborne Particulates and Its Application to Samples Collected at Noto Peninsula

  • Hayakawa, Kazuichi;Tang, Ning;Sato, Kosuke;Izaki, Akihiko;Tatematsu, Michiya;Hama, Hirotaka;Li, Ying;Kameda, Takayuki;Toriba, Akira
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.3
    • /
    • pp.146-151
    • /
    • 2011
  • 1-Nitropyrene (1-NP), 2-NP and 2-nitrofluoranthene (2-NFR) are useful markers for studying the atmospheric behaviors of polycyclic aromatic hydrocarbons (PAHs) and nitropolycyclic aromatic hydrocarbons (NPAHs). However, present methods for measuring trace levels of these compounds are lesssensitive and laborious. Here we describe several improvements to a previously reported high-performance liquid chromatography-chemiluminescence detection system that allows it to determine trace levels of 1-, 2-NPs and 2-NFR. The proposed system was equipped with a reducer column packed with Pt/Rh instead of zinc whose life-time was limited. The combination of Cosmosil MS-II (monomeric ODS) and AR-II (polymeric ODS) columns was used instead of polymeric ODS columns as the separator column to improve the separation. An ethanol mixture with acetate buffer (pH 5.5) was used in place of an acetonitrile mixture with the same buffer to activate the reducer column. The same ethanol mixture was used as the mobile phase for the clean-up column. The switching time of the column switching valve was optimized to concentrate the amino-derivatives of above NPAHs quantitatively on the concentrator column. The concentrations of bis(2,4,6-trichlorophenly) oxalate and hydrogen peroxide in the chemiluminescence reagent solution were optimized to 0.4 mM and 30 mM, respectively, to increase the sensitivity. Under the above conditions, the detection limits (S/N=3) of 1-, 2-NPs and 2-NFR were 1 fmol (0.25 pg), 10 fmol (2.5 pg) and 4 fmol (1 pg), respectively. The proposed system was effectively used to determine trace levels of 1-, 2-NPs and 2-NFR in airborne particulates collected at Noto Peninsula. The atmospheric concentrations of 1-, 2-NPs and 2-NFR were not more than sub pg $m^{-3}$ levels. They were higher in winter (January) than in summer (July). In both seasons, the concentrations were in decreasing order, [2-NFR]>[1-NP]>[2-NP].

Fast and Accurate Determination of Algal Toxins in Water using Online Preconcentration and UPLC-Orbitrap Mass Spectrometry (온라인 시료주입과 UPLC-Orbitrap 질량분석법을 이용한 수질 조류독소의 고속분석방법 개발 및 환경시료적용)

  • Jang, Je-Heon;Kim, Yun-Seok;Choi, Jae-Won
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.843-850
    • /
    • 2012
  • Due to the fast response to algae bloom issue in drinking water treatment plant, very fast determination methodology for algal toxin is required. In this study, column switching technique based online preconcentration method was combined with high resolution full scan mass spectrometer to save sample preparation time and to obtain fast and accurate result. After parameter optimization of online preconcentration, 1mL filtered sample was directly injected to trap column with switching valve system. Next, target toxins are eluted by 98% acetonitrile and analysed with 150 - 1,100 amu scan range at 50,000 resolving power. Method detection limit (MDL) for microcystin-LR, the most toxic isomer, was 0.1 ng/mL and others such as microcystin-YR, microcystin-RR and nodularin were 0.08, 0.03 and 0.04 ng/mL, respectively. This is the best improved sensitivities with 1mL volume in the literature. Furthermore, due to the use of ultra pressure HPLC (UPLC), the whole method run was completed in 4 min. Real sample applications for 173 sample including 55 surface water and 118 treatment plant samples for raw and treated water could be done within 16 hours. In our calculation, this methodology is roughly 80% faster than the previous manual solid-phase extraction with LC-MS/MS method.

On-line Trace Enrichment in High Performance Liquid Chromatography Using XAD-2 Precolumn for the Determination of Lonazolac in Human Plasma

  • Lee, Hye-Suk;Kim, Eun-Joo;Zee, Ok-Pyo;Lee, Yoon-Joong
    • Archives of Pharmacal Research
    • /
    • v.12 no.2
    • /
    • pp.108-113
    • /
    • 1989
  • A new column-switching high performance liquid chromatographic method was developed for the determination of lonazolac in plasma. This method was based on the on-line trace enrichment of lonazolac using a precolumn packed with Amberlite XAD-2. The analysis was complete in 20 min. between injections and the limit of detection was $0.1{\mu}g/ml$ using $100{\mu}l$ of plasma. The method was linear in range of $0.1-10{\mu}g/ml$ with a correlation coefficient of 0.9991. Absolute recovery of lonazolac from the spiked plasma samples ranged from 95.6% to 97.1%. The method was shown to be reproducible over the concentration range studied.

  • PDF