• Title/Summary/Keyword: column-column connection

Search Result 725, Processing Time 0.018 seconds

Experimental Study on Strengthening Effect of Plastic Greenhouse using Tension-tie (인장타이를 이용한 비닐하우스의 보강효과에 관한 실험적 연구)

  • Jang, Yu-Jin;Lee, Swoo-Heon;Chae, Seoung-Hun;Shin, Kyung-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.151-160
    • /
    • 2010
  • The number of cases of collapsed plastic greenhouses in farmlands has increased due to the heavy local snowfall caused by extraordinary atmospheric phenomena. Consequently, the economic losses of farmers have also increased. However the government policy in relation to damage pretension is insufficient and collapse case is repeated every year. The main reason for frame collapse is that the moment capacity of a steel pipe is not sufficient to resist a heavy snowload. In this study, experiments were conducted on the current frame system of a greenhouse with a tension tie. The frame consisted of two sections(${\phi}25.4{\times}1.5$, ${\phi}31.8{\times}1.5$), and its span length was 6.5 m. A temporary tension tie using a steel wire and a fabric rope was connected to the two joints, to which a curved beam and a straight column were connected. The pretension force was applied at the tension tie, and a vertical force simulating snowfall was applied until failure. The fabric rope frame increased the load-carrying capacity by 10-45% compared to the normal frame without a tension tie, and the steel wire frame increased the load-carrying capacity by 58-73% compared to the normal frame without a tension tie. Steel wire was found to be more effective as far as strength is concerned, but its connection details and pretension application are more difficult and complicated than those of the fabric rope. The test results thus show that the fabric rope is more preferable.

The Failure Model of RC Flat Plates Considering Interrelation between Punching Shear and Unbalanced Moment (불균형모멘트와 펀칭전단의 상관관계를 고려한 철근콘크리트 무량판 슬래브의 파괴모델)

  • Choi, Jung-Wook;Song, Jin-Kyu;Song, Ho-Beom
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.523-530
    • /
    • 2008
  • In structural design provision, maximum punching shear stress of slabs is prescribed as combined stress in direct shear occurred by gravity load and eccentric shear occurred by unbalanced moment. This means that the effect of unbalanced moment is considered to decide the punching shear stress. However, from the resistance capacity standpoint, the effect of unbalanced moment strength is not considered for deciding punching shear strength. In this paper, a model considering interrelation between unbalanced moment and punching shear was proposed. In the model, the relation between load effect and resistance capacity in unbalanced moment and punching shear was two-dimensionally expressed. Using the interrelation model, a method how unbalanced moment strength should be considered to decide the punching shear strength was proposed. Additionally, effective width enlargement factors for deciding the unbalanced moment strength of flat plates with shear reinforcements were proposed. The interrelation model proposed in this paper is very effective for the prediction of the behavior of slab-column connection because not only punching shear and unbalanced moment strengths but also failure modes of flat plates can be accurately predicted.

Effective Beam Width for Flat-Plate Systems Having Edge Beams under Lateral Loads (수평하중을 받는 테두리보가 있는 플랫플레이트 시스템의 유효보폭계수)

  • Han, Sang-Whan;Cho, Ja-Ock;Park, Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.213-219
    • /
    • 2008
  • The purpose of this study is to propose frame analysis method for flat plate slabs having edge beam under lateral loads. Flat plate system is defined as the system only with slab of uniform thickness and column. However, the slab system generally incorporate edge beams at exterior connection in actual design. ACI 318 (2005) allows three methods for conducting flat plate system analysis subjected to lateral loads. There are the finite element method (FEM), the equivalent frame method (EFM), and the effective beam width method (EBWM). Among methods, the EBWM enables us to analyze practically by substituting the actual slab to beam element. In this model, the beam element has a thickness equal to that of the slab, and effective beam width equal to some fraction of the slab transverse width. However, the established EBWM was generally proposed for variables of geometry or stiffness reduction factor and seldom proposed for the effect of edge beams. This study verifies that, in the case of flat plate system having edge beams at exterior connections, the lateral stiffness is considerably larger than without edge beams. Therefore it need to analysis method for considered the effect of edge beams. In this study, an analysis model is proposed for the flat plate system having edge beams under lateral loads by considering the effect of edge beams. To verify the accuracy of proposed model, this study compared results of the proposed EBWM with results of FEM of flat plate systems having edge beams under lateral loads. Also, the proposed approach is compared with experimental results of former research.

Purification and Properties of ${\beta}-Mannanases$ from Germinated Guar Bean (${\beta}-Mannanase$ 군(群)의 정제(精製) 및 그들의 성질(性質)에 관(關)한 연구(硏究))

  • Lee, Su-Rae
    • Applied Biological Chemistry
    • /
    • v.7
    • /
    • pp.1-13
    • /
    • 1966
  • 1) Three ${\beta}-1$, 4-mannanases were isolated from germinated guar bean through extraction, ammonium sulfate fractionation, column chromatography on cellulose derivatives and gel filltration on Sephadex G-100. They were designated as ${\beta}-1$, 4-mannanase A,B and C, respectively, in the order of isolation. 2) These enzymes were different in several aspects such as pH optimum, effect of metal ions, adsorbability on cellulose derivatives, molecular weight, Michaelis constant toward reduced ivory nut mannan A, mode of action and extent of hydrolysis of the mannan. 3) ${\beta}-1$, 4-Mannanases A and C were proposed to be two different endo-enzymes of random-splitting type producing a series of oligosaccharides from ${\beta}-1$, 4-mannans. ${\beta}-1$, 4-Mannanase B was suggested to be possibly an exe-type enzyme catalyzing a stepwise splitting from the non-reducing end of ${\beta}-1$, 4-mannans to produce mannose. 4) Guaran was subjected to hydrolysis by the purified enzymes and the consequence was discussed in connection with structural requirements of the enzymes toward substituted ${\beta}-1$, 4-mannans and their role in germinating guar seeds.

  • PDF

Case Study on Economical Fabrication and Erection of Steel Structure and Reduction in Field Erection Time (경제적 철골제작$\cdot$설치 및 공기단축 사례분석연구)

  • Ahn Jae-Bong;Choi Yoon ki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.5 s.21
    • /
    • pp.183-192
    • /
    • 2004
  • Even in Korea the number of steel structure buildings that allow internal space and easy change of their layouts in accordance with the purpose of buildings and box-type steel bridges constructed with thick plates with thickness in a rage just from a few $\beta$AE to \$100\beta$AE is increasing these days and therefore, domestic fabrication and processing technology of members for steel structures is being improved at a pace faster than in the past to meet the growing requirements of consumers for high reliability on quality control on the related steel structures. However, most domestic fabricators os steel structures who are turning out their steel products in accordance with the designs prepared by engineering companies in their respective works for the sake of cost cut more than anything else, hesitating to introduce any advanced new technology into themselves. In the case of the steel structure design application for small and mid-size buildings in particular, it is quite meaningful not only for those who are involved in steel structure business, but also for the people working at construction work fields to review the result of the study on the connections of steel structure members deigned to obtain superb quality of steel structures within short period for steel fabrication and erection at fields in economical ways, as there is a glowing tendency seeking standardization of connection of steel structure members as well as whole structure together with the development on design of construction system of buildings including their exterior and interior decoration materials, manufacture of the related members and fabrication technique structure. This paper has been prepared with the aim to review the peculiar characteristics of buildings constructed with the main frames of steel structures and actual cases of the change made ing the connections between steel structure columns and between columns and girder members in order to reduce the work period necessary for fabrication and erection of steel structures at the maximum as well as the some examples of steel structures fabricated through automatic welding by robots for box-type columns in addition to the description of the problems found in the course of fabricating those steel structures, suggesting possible counter-measures to solve them.