• 제목/요약/키워드: column-beam connection

검색결과 497건 처리시간 0.028초

관통형 고력볼트를 사용한 엔드플레이트형식 콘크리트 충전 각형강관 기둥.H형강 보 접합부의 거동에 관한 실험적 연구 (II) (Experimental study on the Behavior CFT Column to H-Beam Endplate Connections with Penetrated High Strength Bolts (II))

  • 김재건;문태섭
    • 한국강구조학회 논문집
    • /
    • 제11권2호통권39호
    • /
    • pp.109-116
    • /
    • 1999
  • 본 논문은 관통형 고력볼트를 사용한 엔드플레이트형식 콘크리트 충전 각형 강관 기둥 H형강 보 접합부에 대한 단조가력하에서의 실험적 연구이다. 본 실험의 목적은 전회(前回)에서는 파악되지 않았던 엔드플레이트의 두께와 볼트의 배열에 대한 영향을 정확하게 평가하는데 있다. 실험의 주요변수는 엔드플레이트의 두께(12mm, 16mm)와 볼트의 배열 (EP1, EP2, EP3)이다. 변수에 따른 실험결과를 비교, 분석하였다. 1)실험체는 Bjorhovde와 EC3의 분류법에 의해 분류하였다. 2)T-stub모델에 근거한 접합부의 최대 모멘트 예측식에 의해 계산된 이론치$(_tM_u)$는 실험치$(_eM_u)$에 잘 대응하였다.

  • PDF

Progressive Collapse of Steel High-Rise Buildings Exposed to Fire: Current State of Research

  • Jiang, Jian;Li, Guo-Qiang
    • 국제초고층학회논문집
    • /
    • 제7권4호
    • /
    • pp.375-387
    • /
    • 2018
  • This paper presents a review on progressive collapse mechanism of steel framed buildings exposed to fire. The influence of load ratios, strength of structural members (beam, column, slab, connection), fire scenarios, bracing systems, fire protections on the collapse mode and collapse time of structures is comprehensively reviewed. It is found that the key influencing factors include load ratio, fire scenario, bracing layout and fire protection. The application of strong beams, high load ratios, multi-compartment fires will lead to global downward collapse which is undesirable. The catenary action in beams and tensile membrane action in slabs contribute to the enhancement of structural collapse resistance, leading to a ductile collapse mechanism. It is recommended to increase the reinforcement ratio in the sagging and hogging region of slabs to not only enhance the tensile membrane action in the slab, but to prevent the failure of beam-to-column connections. It is also found that a frame may collapse in the cooling phase of compartment fires or under travelling fires. This is because that the steel members may experience maximum temperatures and maximum displacements under these two fire scenarios. An edge bay fire is more prone to induce the collapse of structures than a central bay fire. The progressive collapse of buildings can be effectively prevented by using bracing systems and fire protections. A combination of horizontal and vertical bracing systems as well as increasing the strength and stiffness of bracing members is recommended to enhance the collapse resistance. A protected frame dose not collapse immediately after the local failure but experiences a relatively long withstanding period of at least 60 mins. It is suggested to use three-dimensional models for accurate predictions of whether, when and how a structure collapses under various fire scenarios.

In-plane structural analysis of blind-bolted composite frames with semi-rigid joints

  • Waqas, Rumman;Uy, Brian;Wang, Jia;Thai, Huu-Tai
    • Steel and Composite Structures
    • /
    • 제31권4호
    • /
    • pp.373-385
    • /
    • 2019
  • This paper presents a useful in-plane structural analysis of low-rise blind-bolted composite frames with semi-rigid joints. Analytical models were used to predict the moment-rotation relationship of the composite beam-to-column flush endplate joints that produced accurate and reliable results. The comparisons of the analytical model with test results in terms of the moment-rotation response verified the robustness and reliability of the model. Abaqus software was adopted to conduct frame analysis considering the material and geometrical non-linearities. The flexural behaviour of the composite frames was studied by applying the lateral loads incorporating wind and earthquake actions according to the Australian standards. A wide variety of frames with a varied number of bays and storeys was analysed to determine the bending moment envelopes under different load combinations. The design models were finalized that met the strength and serviceability limit state criteria. The results from the frame analysis suggest that among lateral loads, wind loads are more critical in Australia as compared to the earthquake loads. However, gravity loads alone govern the design as maximum sagging and hogging moments in the frames are produced as a result of the load combination with dead and live loads alone. This study provides a preliminary analysis and general understanding of the behaviour of low rise, semi-continuous frames subjected to lateral load characteristics of wind and earthquake conditions in Australia that can be applied in engineering practice.

액체금속로 면진 시험구조물의 해석모델링 개발 및 지진응답비교 (Development of Analysis Model and Comparison of Seismic Analysis Responses with Test Results for an Isolated Test Structure for Liquid Reactor)

  • 유봉;이재한;구경회
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.411-418
    • /
    • 2001
  • The initial analysis frequencies of the isolated test structure for seismic excitation tests give quite higher values to the actual modal test results. This large difference was redulted from some uncertainties in analysis modeling of several connection regions between column and upper beam, cross bars of the isolated structure. A modified simple analysis model is developed representing the actual dynamic behaviors of the test model, and the seismic analysis responses of the simple model are compared with those of the seismic tests.

  • PDF

Analysis of rigid and semi-rigid steel-concrete composite joints under monotonic loading - Part I: Finite element modelling and validation

  • Amadio, C.;Fragiacomo, M.
    • Steel and Composite Structures
    • /
    • 제3권5호
    • /
    • pp.349-369
    • /
    • 2003
  • The paper concerns the modelling of rigid and semi-rigid steel-concrete composite joints under monotonic loading through use of the Abaqus program, a widespread finite element code. By comparing numerical and experimental results obtained on cruciform tests, it is shown that the proposed modelling allows a good fit of the global joint response in terms of moment-rotation law. Even the local response in terms of stresses and strains is adequately predicted. Hence, this numerical approach may represent a useful tool for attaining a better understanding of experimental results. It may also be used to perform parametric analyses and to calibrate simplified mechanical models for practical applications.

Dynamic analysis of steel frames with semi-rigid connections

  • Zohra, Djouaher Fatma;Nacer, Ihaddoudene Touati Abd
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.327-334
    • /
    • 2018
  • In the steel structures design, beam-to-column connections are usually considered either rigid or pinned, while their actual behavior lies between these two ideal cases. This consideration has a major influence on the results of the local and the global behavior of steel structures. This influence is noticed in the case of a static analysis, and has an important effect in the case of a dynamic analysis. In fact, pinned and rigid nodes can be considered as two specific cases of a semi-rigid behavior. To study the efficiency of the classification adopted in Eurocode 3, a numerical simulation of semi-rigid nodes has been carried out using the software ANSYS. In the aim to validate this simulation, the numerical results are compared to those of an analytical approach. After that, the validated numerical simulation has been used, to evaluate the efficiency of the classification adopted by the Eurocode 3, regarding semi-rigid connections. Finally, a new method is proposed to define a more accurate evaluation about semi-rigid connections.

Limiting the sway on multi-storey un-braced steel frames bending on weak axis with partial strength connections

  • Tahir, Mahmood Md.;Ngian, Poi Shek
    • Structural Engineering and Mechanics
    • /
    • 제38권6호
    • /
    • pp.825-847
    • /
    • 2011
  • This paper investigates the design using wind-moment method for semi-rigid un-braced steel frames bending on weak axis. A limiting sway method has been proposed to reduce the frame sway. Allowance for steel section optimization between moment of inertia on minor axis column and major axis beam was used in conjunction with slope-deflection analysis to derive equations for optimum design in the proposed method. A series of un-braced steel frames comprised of two, four, and six bays ranging in height of two and four storey were studied on minor axis framing. The frames were designed for minimum gravity load in conjunction with maximum wind load and vice-versa. The accuracy of the design equation was found to be in good agreement with linear elastic computer analysis up to second order analysis. The study concluded that the adoption of wind-moment method and the proposed limiting sway method for semi-rigid steel frame bending on weak axis should be restricted to low-rise frames not more than four storey.

합성 PC 부재의 철골 물량산출 알고리즘 기초연구 (Basic study of algorithm for steel quantity analysis of composite precast concrete members)

  • 김경주;임채연;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.96-97
    • /
    • 2014
  • Green Frame is a column-beam structure built by steel frame joints embedded in the columns and beams. Here, the steel frame embedded in the columns and beams is not a standardized product, instead it needs to be order-produced. The quantity for each steel frame size should be calculated to estimate the quantity of steel frames to be manufactured. However, it is highly time-consuming and requires a lot of effort in calculating the quantity of steel frames, for there are a wide range of steel frame types that are embedded in the columns and beams. To solve this problem, the study proposes an algorithm for calculation of the amount of steel frames with ease and promptness. When a program is developed using the algorithm proposed in the study in connection to the information on precast concrete members prepared in the design phase, it is anticipated that the manpower required as well as the manufacturing time will be decreased.

  • PDF

Geometrically nonlinear analysis of plane frames with semi-rigid connections accounting for shear deformations

  • Gorgun, H.;Yilmaz, S.
    • Structural Engineering and Mechanics
    • /
    • 제44권4호
    • /
    • pp.539-569
    • /
    • 2012
  • The behaviour of beam-to-column connections plays an important role in the analysis and design of steel structures. A computer-based method is presented for nonlinear steel frames with semi-rigid connections accounting for shear deformations. The analytical procedure employs transcendental stability functions to model the effect of axial force on the stiffness of members. The member stiffness matrix, and the fixed end forces for various loads were found. The nonlinear analysis method is applied for three planar steel structures. The method is readily implemented on a computer using matrix structural analysis techniques and is applicable for the efficient nonlinear analysis of frameworks.

Experimental evaluation on the seismic performance of steel knee braced frame structures with energy dissipation mechanism

  • Hsu, H.L.;Juang, J.L.;Chou, C.H.
    • Steel and Composite Structures
    • /
    • 제11권1호
    • /
    • pp.77-91
    • /
    • 2011
  • This study experimentally evaluated the seismic performance of steel knee braced frame structures with energy dissipation mechanism. A series of cyclic load tests were conducted on the steel moment resisting frames and the proposed knee braced frames. Test results validated that the demand in the beam-to-column connection designs was alleviated by the proposed design method. Test results also showed that the strength and stiffness of the proposed design were effectively enhanced. Comparisons in energy dissipation between the steel moment resisting frames and the steel knee braced frames further justified the applicability of the proposed method.