• Title/Summary/Keyword: column shear

Search Result 986, Processing Time 0.026 seconds

Vibration of T-type Timoshenko frames subjected to moving loads

  • Wang, Rong-Tyai;Lin, Jin-Sheng
    • Structural Engineering and Mechanics
    • /
    • v.6 no.2
    • /
    • pp.229-243
    • /
    • 1998
  • In this study, a theoretical method to analyze the vibration of a T-type Timoshenko frame is proposed. The effects of axial inertia, rotatory inertia and shear deformation of each branch are considered. The orthogonality of any two distinct sets of mode shape functions is also demonstrated. Vibration of the frame due to moving loads is studied by the method and the response characteristics of the frame are investigated. Furthermore, the effect of column length on the response of the frame is also studied.

An Experimental Study on the Inelastic Behavior of the Reinforced Concrete Column Subject to Cyclic Lateral Loads (반복수평하중을 받는 철근콘크리트 기둥의 비탄성 거동에 관한 실험적 연구)

  • 정세환;정하선;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.45-50
    • /
    • 1991
  • This research has been carried out experimently to verify the structural efficiency of the reinforced concrete columns subjected to cyclic lateral loadings in the inelastic range. Sixteen specimens have been used in the tests, the factors such as reinforcing bars, shear-span ratio, axial load level and loading history being taken differently. The load-carrying capacities and the stiffness degradation in the inelastic range by cycle lateral load application have been counted by observing the load-deformation relationship, the crack initiation and propagation and the energy dissipation phenomena.

  • PDF

Determination of critical excitation in seismic analysis of structures

  • Kamgar, Reza;Rahgozar, Reza
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.875-891
    • /
    • 2015
  • Earthquake can occur anywhere in the world and it is essential to design important members in special structures based on maximum possible forces that can be produced in them under severe earthquake. In addition, since the earthquake is an accidental phenomena and there are no similar earthquakes, therefore the possibility of strong earthquakes should be taken into account in earthquake-resistant design of important structures. Based on this viewpoint, finding the critical acceleration which maximizes internal forces is an essential factor in structural design. This paper proposes critical excitation method to compute the critical acceleration in design of important members in special structures. These critical accelerations are computed so that the columns' internal shear force at the base of the structure at each time step is maximized under constraints on ground motion. Among computed critical accelerations (of each time step), the one which produces maximum internal shear force is selected. A numerical example presents to show the efficiency of critical excitation method in determining the maximum internal shear force and base moment under variety of constraints. The results show that these method can be used to compute the resonant earthquake which have large enough effective duration of earthquake strong motion (between 12.86 sec to 13.38 sec) and produce the internal shear force and base moment for specific column greater than the same value for selected earthquakes in constructing the critical excitation (for different cases about 2.78 to 1.29 times the San Fernando earthquake). Therefore, a group of them can be utilized in developing the response spectrum for design of special structures.

Development of Stiffness Estimation Algorithm for Nonlinear Static Analysis of Bilinear Material Model (전단벽 모형화 방법에 따른 구조해석 신뢰성에 대한 고찰)

  • Jung, Sung-Jin;Park, Se-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.718-723
    • /
    • 2017
  • When structural analysis modelling methods of practical fields are investigated, a slab is generally modeled by a finite element mesh using plate elements and a shear wall is modeled using a shell element or wall element for 3-D structural analysis. The point worthy of notice in this practice is that a shear wall is modelled using only one wall or shell element divided by floors and column lines to produce structural models. The modeling method like this can cause analysis errors according to the type of computer programs in use, and these errors reduce the reliability of the analysis results. Therefore, to secure the reliability of structural analysis, studies of the causes of errors and finding reasonable modeling methods are necessary. In this study, the causes of analysis errors according to the modelling methods of a shear wall, which are used in practical fields, were investigated and some considering matters for modelling a shear wall are presented to reduce the analysis errors on these analysis results.

Stability Analysis of Shear-Flexible and Semi-Rigid Plane Frames (전단변형효과를 고려한 부분강절 평면뼈대구조의 안정성 해석)

  • Min, Byoung Cheol;Min, Dong Ju;Jung, Myung Rag;Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1A
    • /
    • pp.9-18
    • /
    • 2011
  • Generally the connection of structural members is assumed as hinge, rigid and semi-rigid connections. The exact tangent stiffness matrix of a semi-rigid frame element is newly derived using the stability functions considering shear deformations. Also, linearized elastic- and geometric-stiffness matrices of shear deformable semi-rigid frame are newly proposed. For the exact stiffness matrix, an accurate displacement field is introduced by equilibrium equation for beam-column under the bending and the axial forces. Also, stability functions considering sway deformation and force-displacement relations with elastic rotational spring on ends are defined. In order to illustrate the accuracy of this study, various numerical examples are presented and compared with other researcher's results. Lastly, shear deformation and semi-rigid effects on buckling behaviors of structure are parametrically investigated.

Evaluation of Shear Elastic Modulus by Changing Injection Ratio of Grout (그라우트 주입률 변화에 따른 전단탄성계수 평가)

  • Baek, Seungcheol;Lee, Jundae;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.2
    • /
    • pp.51-55
    • /
    • 2013
  • Among various construction methods, deep soil stabilization by chemical method have been widely used in order to improve soft ground. Dynamic variables using ground(such as sand, weathered granite soil and rock) -structure interaction design affected by dynamic load and cyclic load were studied a lot. However, there is something yet to learn about earthquake resistant design regarding reinforced ground by grout. Therefore, in this study using RC test, the correlation between shear strain and shear modulus with change of water content and injection rate in normal portland cement and clay was compared and analyzed by using Ramberg-Osgood model normalization As the result, dynamic coefficient was considerably affected by water content and grout injection rate.

Evaluation of Punching Shear Safety of a Two-Way Void Plywood Slab System with Form (거푸집 패널이 부착된 2방향 중공슬래브의 뚫림 전단 안전성 평가)

  • Hur, Moo-Won;Woo, Hyung-Sik;Park, Jung-Min;Kang, Hyun-Wook;Park, Tae-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.182-189
    • /
    • 2021
  • VPS(Void Plywood Slab System, VPS) has optimized the shape of the hollow material. In addition, it has a function to prevent the floating of the hollow material and the separation due to the working load. In this study, the punching shear capacity of flat plate was performed using Void Plywood Slab System with form work panel proposed in the previous study. As a result of the test, the strength of the VSPS specimen in which the hollow material was placed beyond 2.0 times the column width from the loading point was reduced by 9.4% compared to the reference specimen. However, the strength value was about 1.57 times higher than the design value suggested by KBC 2016. It was found that there was no change in stiffness compared to the reference specimen until shear failure occurred in the VSPS specimen in which the hollow material was placed. It can be seen that this experiment is being destroyed by shear as the flexural reinforcing bars are sufficiently reinforced.

Influence of surface treatments and repair materials on the shear bond strength of CAD/CAM provisional restorations

  • Jeong, Ki-Won;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.2
    • /
    • pp.95-104
    • /
    • 2019
  • PURPOSE. To evaluate the effect of surface treatments and repair materials on the shear bond strength and to measure the fracture toughness of CAD/CAM provisional restoration materials. MATERIALS AND METHODS. Four CAD/CAM (3D printing: Nextdent C&B and ZMD-1000B Temporary, CAD/CAM resin block: Yamahachi PMMA disk and Huge PMMA block) and four conventional (monometacrylate: Jet and Alike, dimetacrylate: Luxatemp and Protemp 4) materials were selected to fabricate disk-shaped specimens and divided into six groups according to surface treatment (n=10). CAD/CAM materials were repaired with Jet or Luxatemp, while conventional materials were repaired with their own materials. The shear bond strength was measured by using universal testing machine. Ten rectangular column-shaped specimens for each material were fabricated to measure the fracture toughness by single edge v notched beam technique. Statistical analysis was performed by one-way ANOVA. RESULTS. The highest shear bond strength of CAD/CAM materials was achieved by SiC paper + sandblasting. It was also accomplished when repairing 3D printing materials with Luxatemp, and repairing CAD/CAM resin blocks with Jet. Yamahachi PMMA disk showed the highest fracture toughness. Nextdent C&B showed the lowest fracture toughness value but no statistically significant difference from Alike and Luxatemp (P>.05). CONCLUSION. In order to successfully repair the CAD/CAM provisional restoration, mechanical surface treatment and appropriate repair material according to the CAD/CAM material type should be selected. The CAD/CAM provisional materials have proper mechanical properties for clinical use as compared to conventional materials.

Development and Verification of a Large Scale Resonant Column Testing System (대형 공진주시험기의 개발 및 검증)

  • Kim, Nam-Ryong;Ha, Ik-Soo;Shin, Dong-Hoon;Kim, Min-Seub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.295-304
    • /
    • 2012
  • In this study, a resonant column testing system which is the largest in Korea has been developed to evaluate the dynamic deformation characteristics of coarse granular geomaterials, and the performance and the applicability of the testing system have been verified. The system has been developed as a typical Stokoe type device whose boundary conditions are fixed bottom and free top with additional mass, and can adopt a large specimen with 200 mm in diameter and 400 mm in height. The driving and measurement instruments are configured as high performance and precision systems, hence the automated testing system is appropriate to drive enough stress and to measure the behavior precisely for the test in practical manner. The dynamic response of the mechanical components and the applicability of the system have been evaluated using metal specimens as well as polyurethane specimens, and its precision was verified by comparing its results with those from other equipment and/or methods. To confirm the applicability of the large system for coarse geomaterials, the resonant column test results from both large and normal scale apparatus for the same material were compared and it was found that the result can be partially affected by scale. Finally, the dynamic deformation characteristics of coarse geomaterial which is used for construction of large dam was evaluated using the large system and its practicality could be confirmed.

Comparison of behavior of high-rise residential buildings with and without post-tensioned transfer plate system

  • Byeonguk Ahn;Fahimeh Yavartanoo;Jang-Keun Yoon;Su-Min Kang;Seungjun Kim;Thomas H.-K. Kang
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.337-348
    • /
    • 2023
  • Shear wall is commonly used as a lateral force resisting system of concrete mid-rise and high-rise buildings, but it brings challenges in providing relatively large space throughout the building height. For this reason, the structure system where the upper structure with bearing, non-bearing and/or shear walls that sits on top of a transfer plate system supported by widely spaced columns at the lower stories is preferred in some regions, particularly in low to moderate seismic regions in Asia. A thick reinforced concrete (RC) plate has often been used as a transfer system, along with RC transfer girders; however, the RC plate becomes very thick for tall buildings. Applying the post-tensioning (PT) technique to RC plates can effectively reduce the thickness and reinforcement as an economical design method. Currently, a simplified model is used for numerical modeling of PT transfer plate, which does not consider the interaction of the plate and the upper structure. To observe the actual behavior of PT transfer plate under seismic loads, it is necessary to model whole parts of the structure and tendons to precisely include the interaction and the secondary effect of PT tendons in the results. This research evaluated the seismic behavior of shear wall-type residential buildings with PT transfer plates for the condition that PT tendons are included or excluded in the modeling. Three-dimensional finite element models were developed, which includes prestressing tendon elements, and response spectrum analyses were carried out to evaluate seismic forces. Two buildings with flat-shape and L-shape plans were considered, and design forces of shear walls and transfer columns for a system with and without PT tendons were compared. The results showed that, in some cases, excluding PT tendons from the model leads to an unrealistic estimation of the demands for shear walls sit on transfer plate and transfer columns due to excluding the secondary effect of PT tendons. Based on the results, generally, the secondary effect reduces shear force demand and axial-flexural demands of transfer columns but increases the shear force demand of shear walls. The results of this study suggested that, in addition to the effect of PT on the resistance of transfer plate, it is necessary to include PT tendons in the modeling to consider its effect on force demand.