• Title/Summary/Keyword: column shear

Search Result 986, Processing Time 0.023 seconds

Effect of stiffener arrangement on hysteretic behavior of link-to-column connections

  • Zarsav, Saman;Zahrai, Seyed Mehdi;Oskouei, Asghar Vatani
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1051-1064
    • /
    • 2016
  • Link-to-column connections in Eccentrically Braced Frames (EBFs) have critical role in their safety and seismic performance. Accordingly, in this study, contribution of supplemental stiffeners on hysteretic behavior of the link-to-column connection is investigated. Considered stiffeners are placed on both sides and parallel to the link web between the column face and the first stiffener of the link. Hysteretic behaviors of the link beams with supplemental stiffeners are numerically investigated using a pre-validated numerical model in ANSYS. It turned out that supplemental stiffeners can change energy dissipation mechanism of intermediate links from shear-flexure to shear. Both rectangular and trapezoidal supplemental stiffeners are studied. Moreover, optimal placement of the supplemental stiffeners is also investigated. Obtained results indicate a discrepancy of less than 9% in maximum link shear of the numerical and experimental specimens. This indicates that the numerical results are in good agreement with those obtained from the test. Trapezoidal supplemental stiffeners improve rotational capacity of the link. Moreover, use of two supplemental stiffeners at both ends of the link can more effectively improve hysteretic behavior of intermediate links. Supplemental stiffeners would also alleviate the imposed demands on the connections. This latter feature is more pronounced in the case of two supplemental stiffeners at both ends of the link.

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (I): Experimental study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.399-408
    • /
    • 2017
  • This paper experimentally studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Four beam-to-wall connection specimens with short and long embedded steel columns are tested under monotonic and cyclic loads, respectively. The influence of embedment length of columns on the failure mode and performance of connections is investigated. The results show that the length of embedded steel columns has significant effect on the failure mode of connections. A connection with a long embedded column has a better stiffness, load-bearing capacity and ductility than that of a short embedded column. The former fails due to the shear yielding of column web in the joint panel, while failure of the latter is initiated by the yielding of horizontal reinforcement in the wall due to the rigid rotation of the column. It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility.

Structural performance of reinforced concrete wall with boundary columns under shear load

  • Chu, Liusheng;He, Yuexi;Li, Danda;Ma, Xing;Cheng, Zhanqi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.479-489
    • /
    • 2020
  • This paper proposed a novel form of reinforced concrete (RC) shear wall confined with boundary columns. The structural effect of applying steel fiber reinforced concrete (SFRC) in the wall-column systems was studied. Three full-scale wall samples were constructed including two RC wall-RC column samples with different stirrup ratios and one RC wall-SFRC column sample. Low frequency cyclic testing was carried out to investigate the failure modes, hysteretic behavior, load-bearing capacity, ductility, stiffness degradation and energy dissipation. ABAQUS models were set up to simulate the structural behavior of tested samples, and good agreement was achieved between numerical simulation and experimental results. A further supplementary parametric study was conducted based on ABAQUS models. Both experimental and numerical results showed that increasing stirrup ratio in boundary columns did not affect much on load bearing capacity or stiffness degradation of the system. However, applying SFRC in boundary columns showed significant enhancement on load bearing capacity. Numerical simulation also shows that the structural performances of RC wall-SFRC column system were comparable to a wall-column system fully with SFRC.

Development and Application of Lattice Shear Reinforcement for Flat Plate Slab-column Connection (래티스를 이용한 철근콘크리트 무량판 구조의 슬래브-기둥 접합부 전단보강 공법 개발)

  • Kang, Su-Min;Park, Sung-Woo;Bang, Joong-Seok;Lee, Do-Bum;Kwon, Chul-Hwan;Park, Hong-Gun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.5
    • /
    • pp.482-490
    • /
    • 2013
  • Although the flat plate system is an efficient structural type due to the simplicity of its construction, the low story height, and the various plan design, the slab-column connections are vulnerable to punching shear failure from gravity load and eccentric shear failure from lateral load. To prevent the structure collapse, various construction methods of slab-column connection reinforcement are developed but none of these satisfies all of structural performance, economics, and constructability. This paper presents the reinforcement of slab-column connection with lattice bars. The structural performance is confirmed with the interior slab-column connection tests subjected to cyclic loading, and the economic feasibility is demonstrated from the structural design under the same condition with lattice bars, stud rails, and stirrups.

Pushover Analysis of Reinforced Concrete Wall-Frame Structures Using Equivalent Column Model (등가 기둥 모델을 이용한 철근콘크리트 전단벽-골조 구조물의 푸쉬오버 해석)

  • Kim, Yong Joon;Han, Arum;Kim, Seung Nam;Yu, Eunjong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.53-61
    • /
    • 2014
  • RC shear wall sections which have irregular shapes such as T, ㄱ, ㄷ sections are typically used in low-rise buildings in Korea. Pushover analysis of building containing such members costs a lot of computation time and needs professional knowledge since it requires complicated modeling and, sometimes, fails to converge. In this study, a method using an equivalent column element for the shear wall is proposed. The equivalent column element consists of an elastic column, an inelastic rotational spring, and rigid beams. The inelastic properties of the rotational spring represent the nonlinear behavior of the shearwall and are obtained from the section analysis results and moment distribution for the member. The use of an axial force to compensate the difference in the axial deformation between the equivalent column element and the actual shear wall is also proposed. The proposed method is applied for the pushover analysis of a 5- story shear wall-frame building and the results are compared with ones using the fiber elements. The comparison shows that the inelastic behavior at the same drift was comparable. However, the performance points estimated using the pushover curves showed some deviations, which seem to be caused by the differences of estimated yield point and damping ratios.

Punching Shear Strength of CFT Column to RC Flat Plate Connections Reinforced with Shearhead (전단머리 보강 CFT기둥-RC 무량판 접합부의 펀칭전단강도)

  • Kim, Jin-Won;Lee, Cheol-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.423-433
    • /
    • 2012
  • This paper summarizes full-scale gravity-load test results on CFT column-to-RC flat plate connections reinforced with shearhead. CFT construction has many structural and constructional advantages over conventional steel and RC column construction and is gaining wide acceptance. Meanwhile the use of RC flat plate system in the basement and residential floors of tall buildings is often mandatory to reduce story height and enable rapid construction in domestic practice. Combining CFT column and flat plate floor is expected to result in further rapid construction. However, the issues related to connecting CFT column to RC flat plate have not been fully addressed yet. Several promising connecting schemes by using steel shearhead were proposed and tested in this study. Test results showed that the proposed connection can exhibit the punching shear strength higher than RC flat plate counterparts. An empirical formula that can reasonably predicts the punching shear strength of the proposed connection was also proposed.

An Experimental Study on Shear Behavior of Internal Reinforced Concrete Beam-Column Assembly (철근콘크리트 보-기둥 내부 접합부의 전단 거동에 관한 실험적 연구)

  • Lee, Jung-Yoon;Kim, Jin-Young;Oh, Ki-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.441-448
    • /
    • 2007
  • The beam-column assembly in a ductile reinforced concrete (RC) frames subjected to seismic loading are generally controlled by shear and bond mechanisms, both of which exhibit poor hysteretic properties. Hence the response of joints is restricted essentially to the elastic domain. The usual earthquake resistant design philosophy of ductile frame buildings allows the beams to form plastic hinges adjacent to beam-column assembly. Increased strain in these plastic hinge regions affect on joint strain to be increased. Thus bond and shear joint strength are decreased. The research reported in this paper presents the test results of five RC beam-column assembly after developing plastic hinges in beams. Main parameter of the test Joints was the amount of the longitudinal tensile reinforcement of the beams. Test results indicted that the ductile capacity of joints increased as the longitudinal tensile reinforcement of the beams decreased. In addition, both the tensile strain of the longitudinal reinforcement bars in the joint and the ductile ratio of the beam-column assemblages increased due to the yielding of steel bars in the plastic hinge regions.

A Study on the Stress Evaluation Equations for Steel Circular Column-to- Box Beam Connections (강재 상자형보-원형기둥 접합부의 응력평가식에 관한 연구)

  • Park, Yong Myung;Chang, Won Je;Hwang, Won Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.505-517
    • /
    • 2004
  • This paper presented equations on the stress evaluation of steel frame pier connections that were composed of a box beam and a circular column. The existing equations, which transformed the circular column into an equivalent box column had some problems; they underestimated a shear lag stress as the joint angle decreased, and overestimated a shear stress as the joint angel increased. Therefore, FE analyses were performed with various parameters, such as joint angle(${\alpha}$), span length-width ratio(L/B), and circular column-to-box beam stiffness ratio(${\alpha}$), and new equations on stress evaluation were proposed based on FE analyses. Furthermore, material and geometric nonlinear analyses were performed to estimate ultimate strength and to confirm the validity of the proposed equations.

Shear behavior of RC interior joints with beams of different depths under cyclic loading

  • Xi, Kailin;Xing, Guohua;Wu, Tao;Liu, Boquan
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.145-153
    • /
    • 2018
  • Extensive reinforced concrete interior beam-column joints with beams of different depths have been used in large industrial buildings and tall building structures under the demand of craft or function. The seismic behavior of the joint, particularly the relationship between deformation and strength in the core region of these eccentric reinforced concrete beam-column joints, has rarely been investigated. This paper performed a theoretical study on the effects of geometric features on the shear strength of the reinforced concrete interior beam-column joints with beams of different depths, which was critical factor in seismic behavior. A new model was developed to analyze the relationship between the shear strength and deformation based on the Equivalent Strut Mechanism (ESM), which combined the truss model and the diagonal strut model. Additionally, this paper developed a simplified calculation method to estimate the shear strength of these type eccentric joints. The accuracy of the model was verified as the modifying analysis data fitted to the test results, which was a loading test of 6 eccentric joints conducted previously.

Experimental and analytical assessment of SRF and aramid composites in retrofitting RC columns

  • Dang, Hoang V.;Shin, Myoungsu;Han, Sang Whan;Lee, Kihak
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.797-815
    • /
    • 2014
  • This research aimed to investigate retrofitting methods for damaged RC columns with SRF (Super Reinforced with Flexibility) and aramid composites and their impacts on the seismic responses. In the first stage, two original (undamaged) column specimens, designed to have a flexural- or shear-controlled failure mechanism, were tested under quasi-static lateral cyclic and constant axial loads to failure. Afterwards, the damaged column specimens were retrofitted, utilizing SRF composites and aramid rods for the flexural-controlled specimen and only SRF composites for the shear-controlled specimen. In the second stage, the retrofitted column specimens were tested again under the same conditions as the first stage. The hysteretic responses such as strength, ductility and energy dissipation were discussed and compared to clarify the specific effects of each retrofitting material on the seismic performances. Generally, SRF composites contributed greatly to the ductility of the specimens, especially for the shear-controlled specimen before retrofitting, in which twice the deformation capacity was obtained in the retrofitted specimen. The shear-controlled specimen also experienced a flexural failure mechanism after retrofitting. In addition, aramid rods moderately fortified the specimen in terms of the maximum shear strength. The maximum strength of the aramid-retrofitted specimen was 12% higher than the specimen without aramid rods. In addition, an analytical modeling of the undamaged specimens was conducted using Response-2000 and Zeus Nonlinear in order to further validate the experimental results.