• Title/Summary/Keyword: column flexural stiffness

Search Result 104, Processing Time 0.025 seconds

Seismic performance of steel plate shear walls with variable column flexural stiffness

  • Curkovic, Ivan;Skejic, Davor;Dzeba, Ivica
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.1-18
    • /
    • 2019
  • In the present study, the behavior of steel plate shear walls (SPSW) with variable column flexural stiffness is experimentally and numerically investigated. Altogether six one-bay one-story specimens, three moment resisting frames (MRFs) and three SPSWs, were designed, fabricated and tested. Column flexural stiffness of the first specimen pair (one MRF and one SPSW) corresponded to the value required by the design codes, while for the second and third pair it was reduced by 18% and 36%, respectively. The quasi-static cyclic test result indicate that SPSW with reduced column flexural stiffness have satisfactory performance up to 4% story drift ratio, allow development of the tension field over the entire infill panel, and cause negligible column "pull-in" deformation which indicates that prescribed minimal column flexural stiffness value, according to AISC 341-10, might be conservative. In addition, finite element (FE) pushover simulations using shell elements were developed. Such FE models can predict SPSW cyclic behavior reasonably well and can be used to conduct numerical parametric analyses. It should be mentioned that these FE models were not able to reproduce column "pull-in" deformation indicating the need for further development of FE simulations with cyclic load introduction which will be part of another paper.

Seismic performance of composite plate shear walls with variable column flexural stiffness

  • Curkovic, Ivan;Skejic, Davor;Dzeba, Ivica;De Matteis, Gianfranco
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.19-36
    • /
    • 2019
  • Cyclic behaviour of composite (steel-concrete) plate shear walls (CPSW) with variable column flexural stiffness is experimentally and numerically investigated. The investigation included design, fabrication and testing of three pairs of one-bay one-storey CPSW specimens. The reference specimen pair was designed in way that its column flexural stiffness corresponds to the value required by the design codes, while within the other two specimen pairs column flexural stiffness was reduced by 18% and 36%, respectively. Specimens were subjected to quasi-static cyclic tests. Obtained results indicate that column flexural stiffness reduction in CPSW does not have negative impact on the overall behaviour allowing for satisfactory performance for up to 4% storey drift ratio while also enabling inelastic buckling of the infill steel plate. Additionally, in comparison to similar steel plate shear wall (SPSW) specimens, column "pull-in" deformations are less pronounced within CPSW specimens. Therefore, the results indicate that prescribed minimal column flexural stiffness value used for CPSW might be conservative, and can additionally be reduced when compared to the prescribed value for SPSWs. Furthermore, finite element (FE) pushover simulations were conducted using shell and solid elements. Such FE models can adequately simulate cyclic behaviour of CPSW and as such could be further used for numerical parametric analyses. It is necessary to mention that the implemented pushover FE models were not able to adequately reproduce column "pull-in" deformation and that further development of FE simulations is required where cyclic loading of the shear walls needs to be simulated.

Experimental behaviours of steel tube confined concrete (STCC) columns

  • Han, Lin-Hai;Yao, Guo-Huang;Chen, Zhi-Bo;Yu, Qing
    • Steel and Composite Structures
    • /
    • v.5 no.6
    • /
    • pp.459-484
    • /
    • 2005
  • In recent years, the use of steel tube confined concrete (STCC) columns has been the interests of many structural engineers. The present study is an attempt to study the monotonic and cyclic behaviours of STCC columns. For the monotonic behaviours, a series of tests on STCC stub columns (twenty one), and beam-columns (twenty) were carried out. The main parameters varied in the tests are: (1) column section types, circular and square; (2) tube diameter (or width) to thickness ratio, from 40 to 162, and (3) load eccentricity ratio (e/r), from 0 to 0.5. For the cyclic behaviours, the test parameters included the sectional types and the axial load level (n). Twelve STCC column specimens, including 6 specimens with circular sections and 6 specimens with square sections were tested under constant axial load and cyclically increasing flexural loading. Comparisons are made with predicted column strengths and flexural stiffness using the existing codes. It was found that STCC columns exhibit very high levels of energy dissipation and ductility, particularly when subjected to high axial loads. Generally, the energy dissipation ability of the columns with circular sections was much higher than those of the specimens with square sections. Comparisons are made with predicted column strengths and flexural stiffness using the existing codes such as AIJ-1997, AISCLRFD- 1994, BS5400-1979 and EC4-1994.

Minimum stiffness of bracing for multi-column framed structures

  • Aristizabal-Ochoa, J. Dario
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.305-325
    • /
    • 1998
  • A method that determines the minimum stiffness of baracing to achieve non-sway buckling conditions at a given story level of a multi-column elastic frame is proposed. Condensed equations that evaluate the required minimum stiffness of the lateral and torsional bracing are derived using the classical stability functions. The proposed method is applicable to elastic framed structures with rigid, semirigid, and simple connections. It is shown that the minimum stiffness of the bracing required by a multi-column system depends on: 1) the plan layout of the columns; 2) the variation in height and cross sectional properties among the columns; 3) the applied axial load pattern on the columns; 4) the lack of symmetry in the loading pattern, column layout, column sizes and heights that cause torsion-sway and its effects on the flexural bucking capacity; and 5) the flexural and torsional end restrains of the columns. The proposed method is limited to elastic framed structures with columns of doubly symmetrical cross section with their principal axes parallel to the global axes. However, it can be applied to inelastic structures when the nonlinear behavior is concentrated at the end connections. The effects of axial deformations in beams and columns are neglected. Three examples are presented in detail to show the effectiveness of the proposed method.

Initial stiffness and moment capacity assessment of stainless steel composite bolted joints with concrete-filled circular tubular columns

  • Wang, Jia;Uy, Brian;Li, Dongxu
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.681-697
    • /
    • 2019
  • This paper numerically assesses the initial stiffness and moment capacity of stainless steel composite bolted joints with concrete-filled circular tubular (CFCT) columns. By comparing with existing design codes including EN 1993-1-8 and AS/NZS 2327, a modified component method was proposed to better predict the flexural performance of joints involving circular columns and curved endplates. The modification was verified with independent experimental results. A wide range of finite element models were then developed to investigate the elastic deformations of column face in bending which contribute to the corresponding stiffness coefficient. A new design formula defining the stiffness coefficient of circular column face in bending was proposed through regression analysis. Results suggest that a factor for the stiffness coefficient of endplate in bending should be reduced to 0.68, and more contribution of prying forces needs to be considered. The modified component method and proposed formula are able to estimate the structural behaviour with reasonable accuracy. They are expected to be incorporated into the current design provisions as supplementary for beam-to-CFCT column joints.

Cyclic Loading Test for Exposed Column-base Plate Connections of Small-size Steel Structures (소규모 철골조 노출형 주각부의 반복가력 실험)

  • Lim, Woo-Young;You, Young-Chan;Yoo, Mi-Na
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.34-45
    • /
    • 2017
  • Cyclic loading tests for a total of nine test specimens were performed to evaluate the seismic performance of the exposed steel column-base plate connections. From the tests, flexural strength, deformation capacity, energy dissipation, and initial stiffness were investigated. The primary test parameters were the thickness of base-plate, embedment length of anchor bolt, the presence of hook, and rib plates. Test results showed that flexural behavior of column base-plate connection was substantially affected by the base-plate thickness, embedment length and the number of anchor bolts. On the other hand, the effect of rib plates on the increase of the flexural performance was not observed. The initial stiffness of the test specimens was about 15% of the flexural stiffness obtained by assuming that the support is fixed. As a result, even if the exposed column base-plate is designed in accordance with current design recommendations, in case that bond strength between concrete and the anchor bolts is not sufficient, the base-plate connection showed an unaccceptable load-displacement behavior.

Flexural behavior of steel storage rack base-plate upright connections with concentric anchor bolts

  • Zhao, Xianzhong;Huang, Zhaoqi;Wang, Yue;Sivakumaran, Ken S.
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.357-373
    • /
    • 2019
  • Steel storage racks are slender structures whose overall behavior and the capacity depend largely on the flexural behavior of the base-plate to upright connections and on the behavior of beam-to-column connections. The base-plate upright connection assembly details, anchor bolt position in particular, associated with the high-rise steel storage racks differ from those of normal height steel storage racks. Since flexural behavior of high-rise rack base connection is hitherto unavailable, this investigation experimentally establishes the flexural behavior of base-plate upright connections of high-rise steel storage racks. This investigation used an enhanced test setup and considered nine groups of three identical tests to investigate the influence of factors such as axial load, base plate thickness, anchor bolt size, bracket length, and upright thickness. The test observations show that the base-plate assembly may significantly influence the overall behavior of such connections. A rigid plate analytical model and an elastic plate analytical model for the overall rotations stiffness of base-plate upright connections with concentric anchor bolts were constructed, and were found to give better predictions of the initial stiffness of such connections. Analytical model based parametric studies highlight and quantify the interplay of components and provide a means for efficient maximization of overall rotational stiffness of concentrically anchor bolted high-rise rack base-plate upright connections.

A Parametrical Study on the flexural strength of Concrete-Filled SHS Columns to Composite H-Beam Connections (충전각형강관 기둥-합성 H형강보 접합부 휨성능 결정요인에 관한 연구)

  • Lee, Jong Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.385-395
    • /
    • 1999
  • Square hollow section columns and H-section beams have recently been increasing1y used. Rigid column-beam connections cannot be made for the structural system and thus some measures to improve the rotational stiffness of connections should be developed. For this purpose, several types of connections. such as H-section beams connected to concrete-filled square hollow section columns, have been contrived and put to experiment. Since the experimental works are usually difficult and expensive. Particularly test of all the types of connections with similar behavior may not be feasible. Instead, the numerical analysis will be adopted predict the flexural stiffness of connections. In this work, FEM modeling techniques are examined and parametric analysis study has been carried out. The major parameters considered are concrete strength, thickness of steel column, magnitude and eccentricity of axial forces.

  • PDF

Behaviour of large fabricated stainless steel beam-to-tubular column joints with extended endplates

  • Wang, Jia;Uy, Brian;Li, Dongxu
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.141-156
    • /
    • 2019
  • This paper presents the flexural behaviour of stainless steel beam-to-tubular column joints with extended endplates subjected to static loading. Moment-rotation relationships were investigated numerically by using Abaqus software with geometric and material nonlinearity considered. The prediction of damages among components was achieved through ductile damage models, and the influence of initial geometric imperfections and residual stresses was evaluated in large fabricated stainless steel joints involving hollow columns and concrete-filled columns. Parametric analysis was subsequently conducted to assess critical factors that could affect the flexural performance significantly in terms of the initial stiffness and moment resistance. A comparison between codes of practice and numerical results was thereafter made, and design recommendations were proposed for further applications. Results suggest that the finite element model can predict the structural behaviour reasonably well with the component damage consistent with test outcomes. Initial geometric imperfections and residual stresses are shown to have little effect on the moment-rotation responses. A series of parameters that can influence the joint behaviour remarkably include the strain-hardening exponents, stainless steel strength, diameter of bolts, thickness of endplates, position of bolts, section of beams and columns. AS/NZS 2327 is more reliable to predict the joint performance regarding the initial stiffness and moment capacity compared to EN 1993-1-8.

Behaviour and design of high-strength steel beam-to-column joints

  • Li, Dongxu;Uy, Brian;Wang, Jia
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.303-317
    • /
    • 2019
  • This paper presents a finite element model for predicting the behaviour of high-strength steel bolted beam-to-column joints under monotonic loading. The developed numerical model considers the effects of material nonlinearities and geometric nonlinearities. The accuracy of the developed model is examined by comparing the predicted results with independent experimental results. It is demonstrated that the proposed model accurately predicts the ultimate flexural resistances and moment-rotation curves for high-strength steel bolted beam-to-column joints. Mechanical performance of three joint configurations with various design details is examined. A parametric study is carried out to investigate the effects of key design parameters on the behaviour of bolted beam-to-column joints with double-extended endplates. The plastic flexural capacities of the beam-to-column joints from the experimental programme and numerical analysis are compared with the current codes of practice. It is found that the initial stiffness and plastic flexural resistance of the high-strength steel beam-to-column joints are overestimated. Proper modifications need to be conducted to ensure the current analytical method can be safely used for the bolted beam-to-column joints with high-performance materials.