• Title/Summary/Keyword: colorectal cancer cells

Search Result 364, Processing Time 0.034 seconds

Inhibitory Effect of Globefish Homogenate on the Growth of Caco-2 Human Colorectal Cancer Cells (복어 균질액의 Caco-2 인간 결장직장암세포 성장 억제 효과에 대한 연구)

  • Kim, Junghoon;Chung, Gujune;Kim, Jungho
    • KSBB Journal
    • /
    • v.32 no.3
    • /
    • pp.212-217
    • /
    • 2017
  • Colorectal cancer is a leading cause of cancer mortality worldwide. Many studies show that most cases of human colorectal cancer arise from adenomatous polyps, which are usually dysplastic, nonmalignant precursor lesions; however, accumulation of multiple somatic mutations leads some to develop into advanced adenoma, which ultimately progresses to an invasive colorectal cancer. Notwithstanding the efforts made to improve chemotherapy, most colorectal cancers are unresponsive to this form of treatment, and malignant colorectal cancers remain incurable. To reduce the incidence of colorectal cancer mortality, further studies to improve colorectal cancer treatment are needed. Here, we show that Globefish homogenate suppresses the growth of Caco-2 human colorectal cancer cells, and that the homogenate inhibits Caco-2 cell proliferation in a dose-dependent manner. These data suggest that Globefish homogenate may suppress colorectal cancer development.

Combination Therapy of Lactobacillus plantarum Supernatant and 5-Fluouracil Increases Chemosensitivity in Colorectal Cancer Cells

  • An, JaeJin;Ha, Eun-Mi
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1490-1503
    • /
    • 2016
  • Colorectal cancer (CRC) is the third most common cancer in the world. Although 5-fluorouracil (5-FU) is the representative chemotherapy drug for colorectal cancer, it has therapeutic limits due to its chemoresistant characteristics. Colorectal cancer cells can develop into cancer stem cells (CSCs) with self-renewal potential, thereby causing malignant tumors. The human gastrointestinal tract contains a complex gut microbiota that is essential for the host's homeostasis. Recently, many studies have reported correlations between gut flora and the onset, progression, and treatment of CRC. The present study confirms that the most representative symbiotic bacteria in humans, Lactobacillus plantarum (LP) supernatant (SN), selectively inhibit the characteristics of 5-FU-resistant colorectal cancer cells (HT-29 and HCT-116). LP SN inhibited the expression of the specific markers CD44, 133, 166, and ALDH1 of CSCs. The combination therapy of LP SN and 5-FU inhibited the survival of CRCs and led to cell death by inducing caspase-3 activity. The combination therapy of LP SN and 5-FU induced an anticancer mechanism by inactivating the Wnt/β-catenin signaling of chemoresistant CRC cells, and reducing the formation and size of colonospheres. In conclusion, our results show that LP SN can enhance the therapeutic effect of 5-FU for colon cancer, and reduce colorectal cancer stem-like cells by reversing the development of resistance to anticancer drugs. This implies that probiotic substances may be useful therapeutic alternatives as biotherapeutics for chemoresistant CRC.

Mechanistic Studies of Cyclin-Dependent Kinase Inhibitor 3 (CDKN3) in Colorectal Cancer

  • Yang, Cheng;Sun, Jun-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.965-970
    • /
    • 2015
  • Colorectal cancer is one of the most severe subtypes of cancer, and has the highest propensity to manifest as metastatic disease. Because of the lack of knowledge of events that correlate with tumor cell migration and invasion, few therapeutic options are available. The current study aimed to explore the mechanism of colorectal cancer in hope of identifying the ideal target for future treatment. We first discovered the pro-tumor effect of a controversial cell cycle regulator, cylin-dependent kinase inhibitor 3 (CDKN3), which is highly expressed in colorectal cancer, and the possible related signaling pathways, by bioinformatics tools. We found that CDKN3 had remarkable effects in suppressing colorectal cancer cell proliferation and migration, inducing cell cycle arrest and apoptosis in a colorectal cancer cell line, SW480 cells. Our study, for the first time, provided consistent evidence showing overexpression of cell cycle regulator CDKN3, in colorectal cancer. The in vitro studies in SW480 cells revealed a unique role of CDKN3 in regulating cellular behavior of colorectal cancer cells, and implied the possibility of targeting CDKN3 as a novel treatment for colorectal cancer.

Screening Peptides Binding Specifically to Colorectal Cancer Cells from a Phage Random Peptide Library

  • Wang, Jun-Jiang;Liu, Ying;Zheng, Yang;Liao, Kang-Xiong;Lin, Feng;Wu, Cheng-Tang;Cai, Guan-Fu;Yao, Xue-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.377-381
    • /
    • 2012
  • The aim of this study was to screen for polypeptides binding specifically to LoVo human colorectal cancer cells using a phage-displayed peptide library as a targeting vector for colorectal cancer therapy. Human normal colorectal mucous epithelial cells were applied as absorber cells for subtraction biopanning with a c7c phage display peptide library. Positive phage clones were identified by enzyme-linked immunosorbent assay and immunofluorescence detection; amino acid sequences were deduced by DNA sequencing. After 3 rounds of screening, 5 of 20 phage clones screened positive, showing specific binding to LoVo cells and a conserved RPM motif. Specific peptides against colorectal cancer cells could be obtained from a phage display peptide library and may be used as potential vectors for targeting therapy for colorectal cancer.

Reversine induces cell cycle arrest and apoptosis via upregulation of the Fas and DR5 signaling pathways in human colorectal cancer cells

  • YOUNG-LAN PARK;SANG-YOON HA;SUN-YOUNG PARK;JUNG-HO CHOI;MIN-WOO JUNG;DAE-SEONG MYUNG;HYUN-SOO KIM;YOUNG-EUN JOO
    • International Journal of Oncology
    • /
    • v.54 no.5
    • /
    • pp.1875-1883
    • /
    • 2019
  • Reversine, a 2,6-diamino-substituted purine analogue, has been reported to be effective in tumor suppression via induction of cell growth arrest and apoptosis of cancer cells. However, it remains unclear whether reversine exerts anticancer effects on human colorectal cancer cells. In the present study, in vitro experiments were conducted to investigate the anticancer properties of reversine in human colorectal cancer cells. The effect of reversine on human colorectal cancer cell lines, SW480 and HCT-116, was examined using a WST-1 cell viability assay, fluorescence microscopy, flow cytometry, DNA fragmentation, small interfering RNA (siRNA) and western blotting. Reversine treatment demonstrated cytotoxic activity in human colorectal cancer cells. It also induced apoptosis by activating poly(ADP-ribose) polymerase, caspase-3, -7 and -8, and increasing the levels of the pro-apoptotic protein second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI. The pan-caspase inhibitor Z-VAD-FMK attenuated these reversine-induced apoptotic effects on human colorectal cancer cells. Additionally, reversine treatment induced cell cycle arrest in the subG1 and G2/M phases via increase in levels of p21, p27 and p57, and decrease in cyclin D1 levels. The expression of Fas and death receptor 5 (DR5) signaling proteins in SW480 and HCT116 cells was upregulated by reversine treatment. Reversine-induced apoptosis and cell cycle arrest were suppressed by inhibition of Fas and DR5 expression via siRNA. In conclusion, Reversine treatment suppressed tumor progression by the inhibition of cell proliferation, induction of cell cycle arrest and induction of apoptosis via upregulation of the Fas and DR5 signaling pathways in human colorectal cancer cells. The present study indicated that reversine may be used as a novel anticancer agent in human colorectal cancer.

Cell-based Immunotherapy for Colorectal Cancer with Cytokine-induced Killer Cells

  • Ji Sung Kim;Yong Guk Kim;Eun Jae Park;Boyeong Kim;Hong Kyung Lee;Jin Tae Hong;Youngsoo Kim;Sang-Bae Han
    • IMMUNE NETWORK
    • /
    • v.16 no.2
    • /
    • pp.99-108
    • /
    • 2016
  • Colorectal cancer is the third leading cancer worldwide. Although incidence and mortality of colorectal cancer are gradually decreasing in the US, patients with metastatic colorectal cancer have poor prognosis with an estimated 5-year survival rate of less than 10%. Over the past decade, advances in combination chemotherapy regimens for colorectal cancer have led to significant improvement in progression-free and overall survival. However, patients with metastatic disease gain little clinical benefit from conventional therapy, which is associated with grade 3~4 toxicity with negative effects on quality of life. In previous clinical studies, cell-based immunotherapy using dendritic cell vaccines and sentinel lymph node T cell therapy showed promising therapeutic results for metastatic colorectal cancer. In our preclinical and previous clinical studies, cytokine-induced killer (CIK) cells treatment for colorectal cancer showed favorable responses without toxicities. Here, we review current treatment options for colorectal cancer and summarize available clinical studies utilizing cell-based immunotherapy. Based on these studies, we recommend the use CIK cell therapy as a promising therapeutic strategy for patients with metastatic colorectal cancer.

Activating Transcription Factor 3 is a Molecular Target for Apoptotic Effect of Silymarin in Human Colorectal Cancer Cells

  • Eo, Hyun Ji;Park, Gwang Hun;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.29 no.3
    • /
    • pp.281-288
    • /
    • 2016
  • Apoptosis has been regarded as a therapeutic target because apoptosis is typically disturbed in human cancer. Silymarin found in the seeds of the milk thistle (Silybum marianum) has been reported to exert anti-cancer properties through apoptosis. This study was performed to investigate the molecular target for silymarin-mediated apoptosis in human colorectal cancer cells. Silymarin reduced the cell viability and induced an apoptosis in human colorectal cancer cells. ATF3 overexpression increased PARP cleavage by silymarin. Increased ATF3 expression in both protein and mRNA was observed in silymarin-treated cells. In addition, silymarin increased the luciferase activity of ATF3 promoter. Inhibition of JNK and IκK-α blocked silymarin-mediated ATF3 expression. The results suggest that silymarin induces apoptosis through JNK and IκKα-dependent ATF3 expression in human colorectal cancer cells.

Apoptosis of Colorectal Cancer UTC116 Cells Induced by Cantharidinate

  • Liu, Bin;Gao, Hai-Cheng;Xu, Jing-Wei;Cao, Hong;Fang, Xue-Dong;Gao, Hai-Mei;Qiao, Shi-Xing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3705-3708
    • /
    • 2012
  • Effects of Cantharidinate on apoptosis of human colorectal cancer UTC-116 cells were investigated by means of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, H and E staining, flow cytometry, and Raman Spectra analysis. The results showed Cantharidinate to exert inhibitory action on proliferation of human colorectal cancer UTC-116 cells, inducing apoptosis, arresting cells in G1 phase, with decline of S and G2 phases. In addition, the results of Raman spectrum showed significant changes in the UTC-116 cells chemical structure with stretching after the application of Cantharidinate. Taken together, these results suggest that the treatment of human colorectal cancer with Cantharidinate may be associated with multiple molecular mechanisms for apoptosis. Furthermore, similar to fluorouracil, Cantharidinate should be considered as novel assistant drug for controlling the growth of human colorectal cancer UTC-116 cells.

Kahweol from Coffee Induces Apoptosis by Upregulating Activating Transcription Factor 3 in Human Colorectal Cancer Cells

  • Park, Gwang Hun;Song, Hun Min;Jeong, Jin Boo
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.337-343
    • /
    • 2017
  • Kahweol as a coffee-specific diterpene has been reported to induce apoptosis in human cancer cells. Although some molecular targets for kahweol-mediated apoptosis have been elucidated, the further mechanism for apoptotic effect of kahweol is not known. Activating transcription factor 3 (ATF3) has been reported to be associated with apoptosis in colorectal cancer. The present study was performed to investigate the molecular mechanism by which kahweol stimulates ATF3 expression and apoptosis in human colorectal cancer cells. Kahweol increased apoptosis in human colorectal cancer cells. It also increased ATF3 expression through the transcriptional activity. The responsible cis-element for ATF3 transcriptional activation by kahweol was CREB located between -147 to -85 of ATF3 promoter. ATF3 overexpression increased kahweol-mediated cleaved PARP, while ATF3 knockdown attenuated the cleavage of PARP by kahweol. Inhibition of ERK1/2 and $GSK3{\beta}$ blocked kahweol-mediated ATF3 expression. The results suggest that kahweol induces apoptosis through ATF3-mediated pathway in human colorectal cancer cells.

Anticancer Activity of Sageretia theezans in Human Colorectal Cancer Cells

  • Kim, Ha Na;Park, Su Bin;Kim, Jeong Dong;Jeong, Hyung Jin;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.108-108
    • /
    • 2018
  • In this study, we evaluated the anti-cancer effect of extracts of leaves (ST-L) and branches (ST-B) from Sageretia theezans in human colorectal cancer cells. ST-L and ST-B significantly inhibited the proliferation of human colorectal cancer cells, SW480. ST-L and ST-B decreased cyclin D1 protein level through the induction of cyclin D1 proteasomal degradation via $GSK3{\beta}$-dependent threonine-286 phosphorylation of cyclin D1. In addition, ST-L and ST-B increased HO-1 protein through p38, ROS and $GSK3{\beta}$-dependent Nrf2 activation. These findings suggest that ST-L and ST-B may have great potential for the development of anti-cancer drug to treat human colorectal cancer.

  • PDF