• Title/Summary/Keyword: color-composite

Search Result 459, Processing Time 0.027 seconds

STUDY ON COLOR DIFFERENCE BETWEEN NATURAL TEETH AND COMPOSITE RESINS (자연치와 복합레진의 색분포에 관한 연구)

  • 김희선;이인복;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.2
    • /
    • pp.180-187
    • /
    • 2001
  • The structure of current guides is largely illogical and without any rational use of color ordering. The shade guides are generally made of plastic (rather than the actual composite material) and do not accurately depict the true shade. translucency. or opacity of the composite resin after polymerization. To solve this problem, information based on evaluations of natural teeth and material that use the same method and experimental conditions is necessary. The present investigation measured the color of natural maxillary anterior teeth in vivo and compared the results with those of composite resins. 269 Korean subjects were selected for this study. Intact central incisor. lateral incisor. and canine were selected. The clinical crowns were free of caries or restorations. The middle site of the coronal portion on the labial surface of the tooth was measured by Chroma Meter. The five light activated. resin-based materials (Amelogen, Denfil, Elitefil, Spectrum, Z100) were used in this study. Resin composite was condensed into plastic mold with a diameter of 8mm and a thickness of 4mm. pressed between glass plates to flatten the surfaces. and polymerized using a Visilux II visible light activation unit. The surfaces were polished sequentially on wet sandpaper. Color measurements of each specimen were accomplished by Chroma Meter. A computer program that compares each tooth color with each composite resin color was written and the minimum CIELAB color difference ($\Delta$E$^*$) between tooth and each material was calculated. Under the conditions of this study: 1. Teeth tend to become darker with advancing age. 2. Canines were darker. more yellow. and less green than incisors. 3. The teeth from the women were lighter. more green. and less yellow than the male teeth. 4. In general. composite resins were lighter. more green. and less yellow than teeth. Deficiencies were noted in Hues in YR range. 5. Mean color differences between the five composite resin products and teeth were detectable to the naked eye($\Delta$E$^*$>1.0). 6. In comparing the mean $\Delta$E$^*$ values of materials. Spectrum showed the least followed by Z100, Elitefil, Amelogen, Denfil in increasing order.

  • PDF

Color Matching of Single-Shade Composite Resin by Various Pulp Capping Materials in Anterior Teeth

  • Sohyun Park;Jongsoo Kim;Jongbin Kim;Mi Ran Han;Jisun Shin;Joonhaeng Lee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.51 no.2
    • /
    • pp.176-184
    • /
    • 2024
  • This study aimed to compare color matching between single-shade composite resin-restored teeth with various pulp capping materials and the dentin surrounding the restoration through instrumental analysis and visual evaluation of the color difference. Fifty maxillary right central incisor acrylic resin teeth were prepared with standardized Class III cavities on the proximal surfaces. These teeth were divided into five groups: restored with single-shade composite resin only; Ultra-BlendTM plus followed by single-shade composite resin; TheraCal PTTM followed by single-shade composite resin; Endocem® MTA premixed followed by single-shade composite resin; and Well-root PTTM followed by single-shade composite resin. The color difference (ΔEab*) between the restored area and the center of the resin teeth was measured using a spectrophotometer. No significant color difference was observed in groups restored with only single-shade composite resin, Ultra-BlendTM plus, and TheraCal PTTM. The visual evaluation revealed that Ultra-BlendTM plus exhibited the best color matching score, whereas the Endocem® MTA premixed and Well-root PTTM groups showed significantly lower color matching scores than the single-shade composite resin-only group. When opting for single-shade composite resin usage for anterior tooth restorations with the aim of reducing chair time, pulp capping materials Ultra-BlendTM plus and TheraCal PTTM provide esthetically pleasing results.

Effects of surrounding and underlying shades on the color adjustment potential of a single-shade composite used in a thin layer

  • Mariana Silva Barros;Paula Fernanda Damasceno Silva;Marcia Luciana Carregosa Santana;Rafaella Mariana Fontes Braganca;Andre Luis Faria-e-Silva
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.1
    • /
    • pp.7.1-7.10
    • /
    • 2023
  • Objectives: This study aimed to evaluate the surrounding and underlying shades' effect on the color adjustment potential (CAP) of a single-shade composite used in a thin layer. Materials and Methods: Cylinder specimens (1.0 mm thick) were built with the Vittra APS Unique composite, surrounded (dual specimens) or not (simple specimens) by a control composite (shade A1, A2, or A3). Simple specimens were also built only with the control composites. Each specimen's color was measured against white and black backgrounds or the simple control specimens with a spectrophotometer (CIELAB system). The whiteness index for dentistry (WID) and translucency parameters (TP00) were calculated for simple specimens. Differences (ΔE00) in color between the simple/dual specimens and the controls were calculated. The CAP was calculated based on the ratios between data from simple and dual specimens. Results: The Vittra APS Unique composite showed higher WID and TP00 values than the controls. The highest values of ΔE00 were observed among simple specimens. The color measurements of Vittra APS Unique (simple or dual) against the control specimens presented the lowest color differences. Only surrounding the single-shade composite with a shaded composite barely impacted the ΔE00. The highest CAP values were obtained using a shaded composite under simple or dual specimens. Conclusions: The CAP of Vittra APS Unique was strongly affected by the underlying shade, while surrounding this composite with a shaded one barely affected its color adjustment.

Color discrepancy of single-shade composites at different distances from the interface measured using cell phone images

  • Marcia Luciana Carregosa Santana;Gabriella de Jesus Santos Livi;Andre Luis Faria-e-Silva
    • Restorative Dentistry and Endodontics
    • /
    • v.49 no.1
    • /
    • pp.7.1-7.11
    • /
    • 2024
  • Objectives: This study aimed to evaluate the impact of substrate color and interface distance on the color adjustment of 2 single-shade composites, Vittra APS Unique and Charisma Diamond One. Materials and Methods: Dual disc-shaped specimens were created using Vittra APS Unique or Charisma Diamond One as the center composite, surrounded by shaded composites (A1 or A3). Color measurements were taken with a spectrophotometer against a gray background, recording the color coordinates in the CIELAB color space. Illumination with a light-correcting device and image acquisition using a polarizing filter-equipped cell phone were performed on specimens over the same background. Image processing software was used to measure the color coordinates in the center and periphery of the inner composite and in the outer composite. The color data were then converted to CIELAB coordinates and adjusted using data from the spectrophotometer. Color differences (ΔE00) between the center/periphery of single-shade and outer composites were calculated, along with color changes in single-shade composites caused by different outer composites. Color differences for the inner composites surrounded by A1 and A3 were also calculated. Data were analyzed using repeated-measures analysis of variance (α = 0.05). Results: The results showed that color discrepancies were lowest near the interface and when the outer composite was whiter (A1). Additionally, Charisma Diamond One exhibited better color adjustment ability than Vittra APS Unique. Conclusions: Color discrepancies between the investigated single-shade composites diminished towards the interface with the surrounding composite, particularly when the latter exhibited a lighter shade.

THE COLOR CHANGE OF VISIBLE LIGHT-CURED COMPOSITE RESINS AND COMPOMERS ACCORDING TO THE THICKNESS AND BACKGROUND COLOR (광중합형 복합레진과 콤포머의 두께와 배경색에 따른 색변화)

  • Im, Ju-Hwan;Han, Jin-Sun;Lee, Su-Jong;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.71-77
    • /
    • 2000
  • The color of an esthetic restorative material is controlled primarily by thickness of the material and background color. Although the effects of the two factors on the color coordinates of esthetic dental materials have been reported, the mechanism has not been clarified well enough to explain the effects quantitatively. The purpose of this study was to evaluate the effect of thickness and background color on the color of tooth colored restorative materials quantitatively. One hundred sixty samples were fabricated from two commercial light-cured composite resins and two commercial compomers. The color characteristics and changes in the color coordinates were measured by a tristimulus colorimeter (Model TC-6FX, Tokyo Denshoku Co. Japan) using the CIELAB system. The results were as follows: 1. As thickness increased from 1.0 to 4.0mm, values of $L^*$ $a^*$ $b^*$ changed irregulary for white and dentin color background, but showed no obvious difference in color for black background. 2. The colors of composite resins and compomers were significantly influenced by background color. 3. The color difference was recognized even the same shade name in four representative kinds of composite resins and compomers. 4. As thickness changed, values of color difference for same products and same background color showed constancy, but showed difference for different background color.

  • PDF

Color quality evaluation of composite resins used for splinting teeth (동요치 고정에 사용되는 복합레진의 색품질 평가)

  • Jung, Ji-Hye;Cheon, Kyeong Jun;Oh, Yonghui;Chang, Hoon-Sang
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.4
    • /
    • pp.995-1002
    • /
    • 2017
  • Purpose: The purpose of this study was to evaluate the color stability of composite resins used for splinting teeth by comparing a self-cure resin cement (Superbond C&B, SB), a flowable composite resin (G-aenial Universal Flo A2, GU), and a composite resin exclusively used for splinting teeth (G-Fix, GF) before and after aging in NaOCl. Methods: Resin samples were fabricated to a size of 2 mm thickness and 8.5 mm diameter and light-cured with an LED light curing unit (G-Light, n = 12). Immediately after fabrication, CIE L*a*b* values of the resin samples were measured with a spectrophotometer (CM-5) as baseline. Then, the resin samples were immersed in 5% NaOCl at $60^{\circ}C$ and the color was measured after 23 hours every day for 4 days. Data were analyzed with one-way ANOVA followed by Duncan post hoc test (p<0.05), and color differences (${\Delta}E$) of resin samples before and after NaOCl aging were also calculated. Results: For SB, there were no changes in L* and a* values but changes were observed in b* values. For GU, there were no changes in L* and b* values but in a* values. For GF, changes were observed in L*, a*, and b* values. All resin samples showed highest ${\Delta}E$ between baseline and the 1st day of NaOCl immersion. ${\Delta}E$ of SB, GU, and GF was 4.6 - 5.8, 4.9 - 7.9, and 9.9 - 16.9, respectively. GF showed highest color change during NaOCl aging. Conclusion: The results of this color quality evaluation showed that the composite resin exclusively used for splinting teeth might be more vulnerable to color change during intraoral service.

A Spectrophotometric Study on Color Differences between Various Light-Cured Composite Resins and Shade Guides (광중합형 복합레진과 shade guide의 색차에 관한 연구)

  • Lim, Kyung-Min;Lee, Min-Ho;Song, Kwang-Yeob
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.1
    • /
    • pp.13-22
    • /
    • 2009
  • The composite resin, due to its esthetic quality, is considered the material of choice for restoration of anterior teeth. To get a satisfactory result in the composite resin restorations, it is necessary to choose right shade. At present, most of the commercial composite resins are based on the Vita Lumin shade guides or shade guides that are provided by their company, but color differences among them might be expected even using the same shade in various materials. This study is to measure color differences between various light-cured composite resins and shade guides and to provide the clinicians with information which may aid in improved color match of esthetic restoration. Four kinds of light-cured composite resins (Gradia Direct (GD), Z250 (Z250), Clearfil AP-X (AP-X), Esthet X (E X)) and shade guides with A2 and A3 shade were used. Three specimens of each material and one specimen of each shade guide were made. Each composite resin was filled into the Teflon mold (1.35 mm depth, 8 mm diameter), followed by compression, polymerization and polishing with wet sandpaper. Shade guides were grinded with polishing stones and rubber points to a thickness of approximately 1.35 mm. Color characteristics were performed with a spectrophotometer(color i5, GretagMacbeth, USA). A computer-controlled spectrophotometer was used to determine CIELAB coordinates ($L^*$, $a^*$, $b^*$) of each specimen and shade guide. The CIELAB measurements made it possible to evaluate the amount of the color difference values (${\Delta}E^*ab$) between composite resins and shade guides. CIE standard D65 was used as the light source. The results were as follows : 1. Among the $L^*$, $a^*$, $b^*$ values of most of 4 kinds of composite resin specimens which are produced by same shade, there were significant differences(p<0.05). 2. Among all 4 kinds of composite resin specimens which are produced by same shade, there were color differences that is perceptible to human eye(${\Delta}E^*>3.3$). 3. Between most of composite resin specimens investigated and their corresponding shade guides, there were color differences that is perceptible to human eye(${\Delta}E^*>3.3$). 4. In the clinical environment, it is recommended that custom shade guides be made from resin material itself for better color matching. Shade guides supplied by manufacturers or Vita Lumin shade guide may not provide clinicians a accurate standard in matching color of composite resins, and there are perceptible color differences in most of products. Therefore, it is recommended that custom shade guides be made from resin material itself and used for better color matching.

Understanding of the color in composite resin (복합레진의 색에 대한 이해)

  • Park, Jeong-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.4
    • /
    • pp.271-279
    • /
    • 2011
  • In clinic, esthetic restoration of a defective natural tooth with composite resin is challenging procedure and needs complete understanding of the color of tooth itself and materials used. The optical characteristics of the composites are different because the chemical compositions and microstructures are not same. This review provided basic knowledge of the color and the color measurement devices, and analyze the color of the natural tooth. Further, the accuracy of the shade tab, color of the composite resins before and after curing, effect of the water, food and bleaching agent, and translucency, opalescence, and fluorescence effects were evaluated.

Color assessment of resin composite by using cellphone images compared with a spectrophotometer

  • Rafaella Mariana Fontes de Braganca;Rafael Ratto Moraes ;Andre Luis Faria-e-Silva
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.2
    • /
    • pp.23.1-23.11
    • /
    • 2021
  • Objectives: This study assessed the reliability of digital color measurements using images of resin composite specimens captured with a cellphone. Materials and Methods: The reference color of cylindrical specimens built-up with the use of resin composite (shades A1, A2, A3, and A4) was measured with a portable spectrophotometer (CIELab). Images of the specimens were obtained individually or pairwise (compared shades in the same photograph) under standardized parameters. The color of the specimens was measured in the images using RGB system and converted to CIELab system using image processing software. Whiteness index (WID) and color differences (ΔE00) were calculated for each color measurement method. For the cellphone, the ΔE00 was calculated between the pairs of shades in separate images and in the same image. Data were analyzed using 2-way repeated-measures analysis of variance (α = 0.05). Linear regression models were used to predict the reference ΔE00 values of those calculated using color measured in the images. Results: Images captured with the cellphone resulted in different WID values from the spectrophotometer only for shades A3 and A4. No difference to the reference ΔE00 was observed when individual images were used. In general, a similar ranking of ΔE00 among resin composite shades was observed for all methods. Stronger correlation coefficients with the reference ΔE00 were observed using individual than pairwise images. Conclusions: This study showed that the use of cellphone images to measure the color difference seems to be a feasible alternative providing outcomes similar to those obtained with the spectrophotometer.

COLOR STABILITY OF CURRENT PROSTHETIC COMPOSITES UNDER ACCELERATED AGING AND IMMERSION IN A COFFEE SOLUTION

  • Kim, Hyo-Jin;Heo, Seong-Joo;Koak, Jai-Young;Chang, Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.3
    • /
    • pp.225-235
    • /
    • 2002
  • The color stability of current prosthetic composites is unknown, even though the quality of composite materials has been improving. This study examined the intrinsic color stability of various current prosthetic resins (ceramic-polymers) after an accelerated aging process and the extrinsic color stability after immersion in a coffee solution. By comparing the amount of discoloration after aging with that without aging, the effect of the accelerated aging process on external discoloration could be evaluated. Three current prosthetic composites (Artglass, Targis, Sculpture), one light polymerized direct composite (Z100) and one dental porcelain control (Ceramco) were assessed. The color changes (${\Delta}$E) of all the specimens were determined using the CIE $L^{*}a^{*}b^{*}$ color order system with a reflected spectrophotometer. The results were as follows: 1. The prosthetic composite materials subjected to the accelerated aging test showed no significant difference in color changes (p >.05). 2. In the coffee solution immersion test after the aging process, the color changes of the Targis and Artglass groups were not different from that of the Z100 group, which showed the highest color change. 3. In the immersion only test, a significantly high color change was observed in the sculpture glazing group. 4. The aging process influenced on the color changes more in the Targis, Artglass and Z100 groups than in the Sculpture and Ceramco groups.