• Title/Summary/Keyword: color vector

Search Result 341, Processing Time 0.021 seconds

Color Laser Printer Identification through Discrete Wavelet Transform and Gray Level Co-occurrence Matrix (이산 웨이블릿 변환과 명암도 동시발생 행렬을 이용한 컬러 레이저프린터 판별 알고리즘)

  • Baek, Ji-Yeoun;Lee, Heung-Su;Kong, Seung-Gyu;Choi, Jung-Ho;Yang, Yeon-Mo;Lee, Hae-Yeoun
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.197-206
    • /
    • 2010
  • High-quality and low-price digital printing devices are nowadays abused to print or forge official documents and bills. Identifying color laser printers will be a step for media forensics. This paper presents a new method to identify color laser printers with printed color images. Since different printer companies use different manufactural systems, printed documents from different printers have little difference in visual. Analyzing this artifact, we can identify the color laser printers. First, high-frequency components of images are extracted from original images with discrete wavelet transform. After calculating the gray-level co-occurrence matrix of the components, we extract some statistical features. Then, these features are applied to train and classify the support vector machine for identifying the color laser printer. In the experiment, total 2,597 images of 7 printers (HP, Canon, Xerox DCC400, Xerox DCC450, Xerox DCC5560, Xerox DCC6540, Konica), are tested to classify the color laser printer. The results prove that the presented identification method performs well with 96.9% accuracy.

Development of an Adult Image Classifier using Skin Color (피부색상을 이용한 유해영상 분류기 개발)

  • Yoon, Jin-Sung;Kim, Gye-Young;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.1-11
    • /
    • 2009
  • To classifying and filtering of adult images, in recent the computer vision techniques are actively investigated because rapidly increase for the amount of adult images accessible on the Internet. In this paper, we investigate and develop the tool filtering of adult images using skin color model. The tool is consisting of two steps. In the first step, we use a skin color classifier to extract skin color regions from an image. In the nest step, we use a region feature classifier to determine whether an image is an adult image or not an adult image depending on extracted skin color regions. Using histogram color model, a skin color classifier is trained for RGB color values of adult images and not adult images. Using SVM, a region feature classifier is trained for skin color ratio on 29 regions of adult images. Experimental results show that suggested classifier achieve a detection rate of 92.80% with 6.73% false positives.

Real Time Traffic Light Detection Algorithm Based on Color Map and Multilayer HOG-SVM (색상지도와 멀티 레이어 HOG-SVM 기반의 실시간 신호등 검출 알고리즘)

  • Kim, Sanggi;Han, Dong Seog
    • Journal of Broadcast Engineering
    • /
    • v.22 no.1
    • /
    • pp.62-69
    • /
    • 2017
  • Accurate detection of traffic lights is very important for the advanced driver assistance system (ADAS). There have been many research developments in this area. However, conventional of image processing methods are usually sensitive to varying illumination conditions. This paper proposes a traffic light detection algorithm to overcome this situation. The proposed algorithm first detects the candidates of traffic light using the proposed color map and hue-saturation-value (HSV) Traffic lights are then detected using the conventional histogram of oriented gradients (HOG) descriptor and support vector machine (SVM). Finally, the proposed Multilayer HOG descriptor is used to determine the direction information indicated by traffic lights. The proposed algorithm shows a high detection rate in real-time.

New N-dimensional Basis Functions for Modeling Surface Reflectance (표면반사율 모델링을 위한 새로운 N차원 기저함수)

  • Kwon, Oh-Seol
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.195-198
    • /
    • 2012
  • The N basis functions are typically chosen so that Surface reflectance functions(SRFs) and spectral power distributions (SPDs) can be accurately reconstructed from their N-dimensional vector codes. Typical rendering applications assume that the resulting mapping is an isomorphism where vector operations of addition, scalar multiplication, component-wise multiplication on the N-vectors can be used to model physical operations such as superposition of lights, light-surface interactions and inter-reflection. The vector operations do not mirror the physical. However, if the choice of basis functions is restricted to characteristic functions then the resulting map between SPDs/SRFs and N-vectors is anisomorphism that preserves the physical operations needed in rendering. This paper will show how to select optimal characteristic function bases of any dimension N (number of basis functions) and also evaluate how accurately a large set of Munsell color chips can approximated as basis functions of dimension N.

Image Retrieval Using Spacial Color Correlation and Local Texture Characteristics (칼라의 공간적 상관관계 및 국부 질감 특성을 이용한 영상검색)

  • Sung, Joong-Ki;Chun, Young-Deok;Kim, Nam-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.103-114
    • /
    • 2005
  • This paper presents a content-based image retrieval (CBIR) method using the combination of color and texture features. As a color feature, a color autocorrelogram is chosen which is extracted from the hue and saturation components of a color image. As a texture feature, BDIP(block difference of inverse probabilities) and BVLC(block variation of local correlation coefficients) are chosen which are extracted from the value component. When the features are extracted, the color autocorrelogram and the BVLC are simplified in consideration of their calculation complexity. After the feature extraction, vector components of these features are efficiently quantized in consideration of their storage space. Experiments for Corel and VisTex DBs show that the proposed retrieval method yields 9.5% maximum precision gain over the method using only the color autucorrelogram and 4.0% over the BDIP-BVLC. Also, the proposed method yields 12.6%, 14.6%, and 27.9% maximum precision gains over the methods using wavelet moments, CSD, and color histogram, respectively.

Real-Time Image-Based Relighting for Tangible Video Teleconference (실감화상통신을 위한 실시간 재조명 기술)

  • Ryu, Sae-Woon;Parka, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.14 no.6
    • /
    • pp.807-810
    • /
    • 2009
  • This paper deals with a real-time image based relighting system for tangible video teleconference. The proposed image based relighting system renders the extracted human object using the virtual environmental images. The proposed system can homogenize virtually the lighting environments of remote users on the video teleconference, or render the humans like they are in the virtual places. To realize the video teleconference, the paper obtains the 3D object models of users in real-time using the controlled lighting system. In this paper, we use single color camera and synchronized two directional flash lights. Proposed system generates pure shading images using on and off flash images subtraction. One pure shading reflectance map generates a directional normal map from multiplication of each reflectance map and basic normal vector map. Each directional basic normal map is generated by inner vector calculation of incident light vector and camera viewing vector. And the basic normal vector means a basis component of real surface normal vector. The proposed system enables the users to immerse video teleconference just as they are in the virtual environments.

Night Time Leading Vehicle Detection Using Statistical Feature Based SVM (통계적 특징 기반 SVM을 이용한 야간 전방 차량 검출 기법)

  • Joung, Jung-Eun;Kim, Hyun-Koo;Park, Ju-Hyun;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.4
    • /
    • pp.163-172
    • /
    • 2012
  • A driver assistance system is critical to improve a convenience and stability of vehicle driving. Several systems have been already commercialized such as adaptive cruise control system and forward collision warning system. Efficient vehicle detection is very important to improve such driver assistance systems. Most existing vehicle detection systems are based on a radar system, which measures distance between a host and leading (or oncoming) vehicles under various weather conditions. However, it requires high deployment cost and complexity overload when there are many vehicles. A camera based vehicle detection technique is also good alternative method because of low cost and simple implementation. In general, night time vehicle detection is more complicated than day time vehicle detection, because it is much more difficult to distinguish the vehicle's features such as outline and color under the dim environment. This paper proposes a method to detect vehicles at night time using analysis of a captured color space with reduction of reflection and other light sources in images. Four colors spaces, namely RGB, YCbCr, normalized RGB and Ruta-RGB, are compared each other and evaluated. A suboptimal threshold value is determined by Otsu algorithm and applied to extract candidates of taillights of leading vehicles. Statistical features such as mean, variance, skewness, kurtosis, and entropy are extracted from the candidate regions and used as feature vector for SVM(Support Vector Machine) classifier. According to our simulation results, the proposed statistical feature based SVM provides relatively high performances of leading vehicle detection with various distances in variable nighttime environments.

Automatic Genre Classification of Sports News Video Using Features of Playfield and Motion Vector (필드와 모션벡터의 특징정보를 이용한 스포츠 뉴스 비디오의 장르 분류)

  • Song, Mi-Young;Jang, Sang-Hyun;Cho, Hyung-Je
    • The KIPS Transactions:PartB
    • /
    • v.14B no.2
    • /
    • pp.89-98
    • /
    • 2007
  • For browsing, searching, and manipulating video documents, an indexing technique to describe video contents is required. Until now, the indexing process is mostly carried out by specialists who manually assign a few keywords to the video contents and thereby this work becomes an expensive and time consuming task. Therefore, automatic classification of video content is necessary. We propose a fully automatic and computationally efficient method for analysis and summarization of spots news video for 5 spots news video such as soccer, golf, baseball, basketball and volleyball. First of all, spots news videos are classified as anchor-person Shots, and the other shots are classified as news reports shots. Shot classification is based on image preprocessing and color features of the anchor-person shots. We then use the dominant color of the field and motion features for analysis of sports shots, Finally, sports shots are classified into five genre type. We achieved an overall average classification accuracy of 75% on sports news videos with 241 scenes. Therefore, the proposed method can be further used to search news video for individual sports news and sports highlights.

e-Catalogue Image Retrieval Using Vectorial Combination of Color Edge (컬러에지의 벡터적 결합을 이용한 e-카탈로그 영상 검색)

  • Hwang, Yei-Seon;Park, Sang-Gun;Chun, Jun-Chul
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.579-586
    • /
    • 2002
  • The edge descriptor proposed by MPEG-7 standard is a representative approach for the contents-based image retrieval using the edge information. In the edge descriptor, the edge information is the edge histogram derived from a gray-level value image. This paper proposes a new method which extracts color edge information from color images and a new approach for the contents-based image retrieval based on the color edge histogram. The poposed method and technique are applied to image retrieval of the e-catalogue. For the evaluation, the results of image retrieval using the proposed approach are compared with those of image retrieval using the edge descriptor by MPEG-7 and the statistics shows the efficiency of the proposed method. The proposed color edge model is made by combining the R,G,B channel components vectorially and by characterizing the vector norm of the edge map. The color edge histogram using the direction of the color edge model is subsequently used for the contents-based image retrieval.

Hybrid Color and Grayscale Images Encryption Scheme Based on Quaternion Hartley Transform and Logistic Map in Gyrator Domain

  • Li, Jianzhong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.42-54
    • /
    • 2016
  • A hybrid color and grayscale images encryption scheme based on the quaternion Hartley transform (QHT), the two-dimensional (2D) logistic map, the double random phase encoding (DRPE) in gyrator transform (GT) domain and the three-step phase-shifting interferometry (PSI) is presented. First, we propose a new color image processing tool termed as the quaternion Hartley transform, and we develop an efficient method to calculate the QHT of a quaternion matrix. In the presented encryption scheme, the original color and grayscale images are represented by quaternion algebra and processed holistically in a vector manner using QHT. To enhance the security level, a 2D logistic map-based scrambling technique is designed to permute the complex amplitude, which is formed by the components of the QHT-transformed original images. Subsequently, the scrambled data is encoded by the GT-based DRPE system. For the convenience of storage and transmission, the resulting encrypted signal is recorded as the real-valued interferograms using three-step PSI. The parameters of the scrambling method, the GT orders and the two random phase masks form the keys for decryption of the secret images. Simulation results demonstrate that the proposed scheme has high security level and certain robustness against data loss, noise disturbance and some attacks such as chosen plaintext attack.