• Title/Summary/Keyword: color rendering

Search Result 252, Processing Time 0.026 seconds

Optical Simulation Study of the Improvement of Color-rendering Characteristics of White Light-emitting Diodes by Using Red Quantum-dot Films (적색 양자점 필름을 이용한 백색 발광 다이오드의 연색성 개선에 대한 광학 시뮬레이션 연구)

  • Lee, Gi Jung;Hong, Seung Chan;Lee, Jung-Gyun;Ko, Jae-Hyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.4
    • /
    • pp.163-171
    • /
    • 2021
  • Conventional white light-emitting diodes (LEDs) for lighting applications consist of blue LEDs and yellow phosphors, the spectrum of which lacks deep red. To improve the color-rendering characteristics of white LEDs, a red quantum-dot film was applied to the diffuser plate of LED lighting. The mean free paths of the quantum dots and the concentration of the TiO2 particles in the diffuser plate were adjusted to optimize the optical structure of the lighting. The color-rendering index (CRI) was greater than 90 for most conditions, which demonstrates that adoption of the red quantum-dot film is an effective way for improving the color-rendering properties of conventional white LEDs. The angular dispersion of color coordinates could be removed by utilizing the optical cavity formed between the diffuser plate and the reflector on the bottom of the lighting, where multiple passages of the light through the quantum-dot film reduced the differences in optical path length depending on the viewing angle.

Bi-layers Red-emitting Sr2Si5N8:Eu2+ Phosphor and Yellow-emitting YAG:Ce Phosphor: A New Approach for Improving the Color Rendering Index of the Remote Phosphor Packaging WLEDs

  • Nhan, Nguyen Huu Khanh;Minh, Tran Hoang Quang;Nguyen, Tan N.;Voznak, Miroslav
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.613-617
    • /
    • 2017
  • Due to optimal advances such as chromatic performance, durability, low power consumption, high efficiency, long-lifetime, and excellent environmental friendliness, white LEDs (WLEDs) are widely used in vehicle front lighting, backlighting, decorative lighting, street lighting, and even general lighting. In this paper, the remote packaging WLEDs (RP-WLEDs) with bi-layer red-emitting $Sr_2Si_5N_8:Eu^{2+}$ and yellow-emitting YAG:Ce phosphor was proposed and investigated. The simulation results based on the MATLAB software and the commercial software Light Tools indicated that the color rendering index (CRI) of bi-layer phosphor RP-WLEDs had a significant increase. The CRI had a considerable increase from 72 to 94. In conclusion, the results showed that bi-layer red-emitting $Sr_2Si_5N_8:Eu^{2+}$ and yellow-emitting YAG:Ce phosphor could be a prospective approach for manufacturing RP-WLEDs with enhanced optical properties.

Effect of Red-emitting Sr2.41F2.59B20.03O74.8:Eu0.12,Sm0.048 Phosphor on Color Rendering Index and Luminous Efficacy of White LEDs

  • Nguyen, Anh Q.D.;Nguyen, Vinh H.;Lee, Hsiao-Yi
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.118-124
    • /
    • 2017
  • Color rendering index (CRI) and luminous efficacy (LE) are two key performance factors of white LEDs (WLED). While most recent works in optics focus on methodology to improve these factors, little attention has been dedicated to chemical composition of materials. This paper studies the effect of $Sr_{2.4}1F_{2.59}B_{20.03}O_{74.8}:Eu_{0.12},Sm_{0.048}$ phosphor (SrSm), in terms of concentration and particle size on CRI and LE of 8500 K - WLEDs. Importantly, the molar mass of the componential ions in SrSm are calculated to shed light on the connection between the chemical composition of the material of interest and the performance of WLEDs. Results show that CRI can be improved to a value of around 86 by boosting red-light components in WLEDs, for all 3 major configurations: conformal, in-cup, and remote phosphor. CRI value tends to decrease with larger size of particles, while LE value goes in the reverse direction. On the other hand, both CRI and LE appear to be reduced at higher concentration of SrSm. This light attenuation is analyzed by using the Lambert-Beer law and Mie-scattering theory.

The Subjective Evaluation on White Light Property and Color Appearance of Single Chip LED and RGB Multi Chip LED (단일칩 LED와 RGB 멀티칩 LED의 백색광 특성 및 색 보임에 대한 주관평가 연구)

  • Sim, Yun-Ju;Kim, In-Tae;Choi, An-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • To produce the white light, there are a single chip method using the blue light and phosphor coating, a multi chip method by mixing R, G, B light.. Multi chip method is proper for the smart lighting system by controling color and color temperature. And color rendering of single chip LED is good by even spectral distribution. To apply application technic like smart light system, this paper analyzed the properties of single chip LED and RGB multi chip LED, and implemented the 2 part subject evaluation for single chip LED and RGB multi chip LED. The first part is comparison of properties for single chip LED and RGB multi chip and second part is color appearance evaluation of 8 colors in each lighting environment.

Cartoon Character Rendering based on Shading Capture of Concept Drawing (원화의 음영 캡쳐 기반 카툰 캐릭터 렌더링)

  • Byun, Hae-Won;Jung, Hye-Moon
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.8
    • /
    • pp.1082-1093
    • /
    • 2011
  • Traditional rendering of cartoon character cannot revive the feeling of concept drawings properly. In this paper, we propose capture technology to get toon shading model from the concept drawings and with this technique, we provide a new novel system to render 3D cartoon character. Benefits of this system is to cartoonize the 3D character according to saliency to emphasize the form of 3D character and further support the sketch-based user interface for artists to edit shading by post-production. For this, we generate texture automatically by RGB color sorting algorithm to analyze color distribution and rates of selected region. In the cartoon rendering process, we use saliency as a measure to determine visual importance of each area of 3d mesh and we provide a novel cartoon rendering algorithm based on the saliency of 3D mesh. For the fine adjustments of shading style, we propose a user interface that allow the artists to freely add and delete shading to a 3D model. Finally, this paper shows the usefulness of the proposed system through user evaluation.

The Color Juxtaposition of Pointillism Based on Real-Works Analysis (실제 작품의 분석을 통한 점묘화의 색상병치)

  • Seo, Sang-Hyun;Yoon, Kyung-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.2
    • /
    • pp.19-28
    • /
    • 2010
  • In this paper, we proposes a method that analyzes the characteristics and patterns of color juxtaposition based on the color wheel used by pointillism painter and an algorithm that generates pointillistic images by applying obtained analysis data. In order to analyze color juxtaposition of pointillism, we extract the stroke colors of real painting and find the most similar probability density functions(PDFs) through applying good-of-fit tests for the probabilistic distribution of stroke colors. By performing the juxtaposition of color based on the found PDFs, we can convert input image to pointillistic image effectively. It can be seen that this study shows reliability in the use of data obtained from actual paintings and that leads to perform a reasonable work.

Improving CRI and Scotopic-to-Photopic Ratio Simultaneously by Spectral Combinations of CCT-tunable LED Lighting Composed of Multi-chip LEDs

  • Kim, Jong-Oh;Jo, Hyeong-Seob;Ryu, Uh-Chan
    • Current Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.247-252
    • /
    • 2020
  • Important determinants for selecting outdoor lighting are the color-rendering index (CRI) and scotopic-to-photopic (S/P) ratio of the lighting units. The higher the S/P ratio, the better energy savings and visual performance. In this study, CCT-tunable LED lighting units were optimized and fabricated by spectral combination of red, green, blue, and yellow LEDs. The measured results for RGB LEDs provided S/P ratios of 1.55~2.58 and those of RGBY LEDs gave 1.46~2.46 to the correlated color temperatures (CCTs) ranging from 2700 K to 6500 K, with CRI values of over 80 at the same time.

An Efficient z-Buffer Algorithm using Temporal Coherence (시간 일관성을 이용한 효율적인 z-버퍼 알고리즘)

  • Oh, Kyung-Su;Shin, Yeong-Gil;Shin, Byeong-Seok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.1
    • /
    • pp.13-22
    • /
    • 2000
  • We present a method that enhances the rendering speed of z-buffer algorithm using temporal coherence between two contiguous frames on fixed viewing conditions. Conventional z-buffer algorithm stores depth value for each pixel on a view plane while rendering some polygons, then it determines the visibility of the remaining polygons based on the stored depth values. If we can get color and depth information for some polygons without rendering, it is possible to generate an image by rendering only the remaining ones. In case of high frame rate, we can find the fact that sets of static polygons of the two contiguous frames are almost the same. This temporal coherence enables us to get the color and depth information of static polygons efficiently. Our algorithm stores color and depth information of static polygons and reuses it for generating the next frame. This method can be easily implemented since it does not require complex data structure and modification for conventional z-buffer algorithm. Also it is adequate for hardware implementation.

  • PDF

Edge Based Dynamic Brush Stroke Generation for Painterly Rendering (회화적 렌더링을 위한 에지 기반 동적 브러시 스트로크 생성에 관한 연구)

  • Park Youngsup;Yoon Kyunghyun
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.2
    • /
    • pp.164-173
    • /
    • 2005
  • Painterly rendering may bring various results through the parameters that determine the characteristics of brush strokes such as, color, orientation, size, and shape. In this paper, we propose the most adaptive brush stroke generation for source images, using reference data. Our algorithm used Colors formed by actual palette colors from artists. To create the palette, we have referred mostly to colors used in Van Gogh's works and determined the color of brush strokes by transferring it to the most similar one, through comparing colors used in source images and the palette colors. Also, In order to emulate a brush stroke with dynamic properties like Van Gogh styles we have applied a brush stroke orientation that surrounds the edges by referring to the edge orientation of source images. The sizes were determined depending on the different sizes of the objects from wide to narrow brushes. Finally, we applied spline curve shapes to simulate curves and swirls like Van Gogh styles. The brush strokes created in such method, were applied separately according to its segmented images, and composed after rendering.

  • PDF

Intermediate View Synthesis Method using Kinect Depth Camera (Kinect 깊이 카메라를 이용한 가상시점 영상생성 기술)

  • Lee, Sang-Beom;Ho, Yo-Sung
    • Smart Media Journal
    • /
    • v.1 no.3
    • /
    • pp.29-35
    • /
    • 2012
  • A depth image-based rendering (DIBR) technique is one of the rendering processes of virtual views with a color image and the corresponding depth map. The most important issue of DIBR is that the virtual view has no information at newly exposed areas, so called dis-occlusion. In this paper, we propose an intermediate view generation algorithm using the Kinect depth camera that utilizes the infrared structured light. After we capture a color image and its corresponding depth map, we pre-process the depth map. The pre-processed depth map is warped to the virtual viewpoint and filtered by median filtering to reduce the truncation error. Then, the color image is back-projected to the virtual viewpoint using the warped depth map. In order to fill out the remaining holes caused by dis-occlusion, we perform a background-based image in-painting operation. Finally, we obtain the synthesized image without any dis-occlusion. From experimental results, we have shown that the proposed algorithm generated very natural images in real-time.

  • PDF