• Title/Summary/Keyword: color image segmentation

Search Result 411, Processing Time 0.025 seconds

A study on the color image segmentation using the fuzzy Clustering (퍼지 클러스터링을 이용한 칼라 영상 분할)

  • 이재덕;엄경배
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.109-112
    • /
    • 1999
  • Image segmentation is the critical first step in image information extraction for computer vision systems. Clustering methods have been used extensively in color image segmentation. Most analytic fuzzy clustering approaches are divided from the fuzzy c-means(FCM) algorithm. The FCM algorithm uses fie probabilistic constraint that the memberships of a data point across classes sum to 1. However, the memberships resulting from the FCM do not always correspond to the intuitive concept of degree of belonging or compatibility. Moreover, the FCM algorithm has considerable trouble under noisy environments in the feature space. Recently, a possibilistic approach to clustering(PCM) for solving above problems was proposed. In this paper, we used the PCM for color image segmentation. This approach differs from existing fuzzy clustering methods for color image segmentation in that the resulting partition of the data can be interpreted as a possibilistic partition. So, the problems in the FCM can be solved by the PCM. But, the clustering results by the PCM are not smoothly bounded, and they often have holes. The region growing was used as a postprocessing after smoothing the noise points in the pixel seeds. In our experiments, we illustrate that the PCM us reasonable than the FCM in noisy environments.

  • PDF

Segmentation of Color Image by Subtractive and Gravity Fuzzy C-means Clustering (차감 및 중력 fuzzy C-means 클러스터링을 이용한 칼라 영상 분할에 관한 연구)

  • Jin, Young-Goun;Kim, Tae-Gyun
    • Journal of IKEEE
    • /
    • v.1 no.1 s.1
    • /
    • pp.93-100
    • /
    • 1997
  • In general, fuzzy C-means clustering method was used on the segmentation of true color image. However, this method requires number of clusters as an input. In this study, we suggest new method that uses subtractive and gravity fuzzy C-means clustering. We get number of clusters and initial cluster centers by applying subtractive clustering on color image. After coarse segmentation of the image, we apply gravity fuzzy C-means for optimizing segmentation of the image. We show efficiency of the proposed algorithm by qualitative evaluation.

  • PDF

Image Segmentation of Teeth Region by Color Image Analysis (컬러 영상 분할 기법을 활용한 치아 영역 자동 검출)

  • Lee, Seong-Taek;Kim, Kyeong-Seop;Yoon, Tae-Ho;Kim, Kee-Deog;Park, Won-Se
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1207-1214
    • /
    • 2009
  • In this study, we propose a novel color-image segmentation algorithm to discern the teeth region utilizing RG intensity and its relevant RGB histogram features with resolving the variations of its maximum intensity in terms of peaks and valleys. Tooth candidates in a CCD image are first extracted by applying RGB color multi-threshold levels and consequently the successive morphological image operations and a Sobel-mask edge processing are performed to resolve the teeth region and its contour.

Region Merging Method Preserving Object Boundary for Color Image Segmentation (칼라 영상 분할을 위한 경계선 보존 영역 병합 방법)

  • 유창연;곽내정;김영길;안재형
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.3
    • /
    • pp.319-326
    • /
    • 2004
  • In this paper, we propose color image segmentation by region merging method preserving the boundary of an object. The proposed method selects initial region by using quantized image's index map after vector quantizing an original image. After then, we merge regions by applying boundary restricted factor in order to consider the boundary of an object in HSI color space. Also we merge the regions in RGB color space for non-processed regions in HSI color space. And we reduce processing time by decreasing iterative process in region merging algorithm. Experimental results have demonstrated the superiority in region's segmentation results and processing time for various images.

  • PDF

A Method of Color Image Segmentation Based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) Using Compactness of Superpixels and Texture Information (슈퍼픽셀의 밀집도 및 텍스처정보를 이용한 DBSCAN기반 칼라영상분할)

  • Lee, Jeonghwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.4
    • /
    • pp.89-97
    • /
    • 2015
  • In this paper, a method of color image segmentation based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) using compactness of superpixels and texture information is presented. The DBSCAN algorithm can generate clusters in large data sets by looking at the local density of data samples, using only two input parameters which called minimum number of data and distance of neighborhood data. Superpixel algorithms group pixels into perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid. Each superpixel is consist of pixels with similar features such as luminance, color, textures etc. Superpixels are more efficient than pixels in case of large scale image processing. In this paper, superpixels are generated by SLIC(simple linear iterative clustering) as known popular. Superpixel characteristics are described by compactness, uniformity, boundary precision and recall. The compactness is important features to depict superpixel characteristics. Each superpixel is represented by Lab color spaces, compactness and texture information. DBSCAN clustering method applied to these feature spaces to segment a color image. To evaluate the performance of the proposed method, computer simulation is carried out to several outdoor images. The experimental results show that the proposed algorithm can provide good segmentation results on various images.

Individual Tooth Image Segmentation by Watershed Algorithm (워터쉐드 기법을 이용한 개별적 치아 영역 자동 검출)

  • Lee, Seong-Taek;Kim, Kyeong-Seop;Yoon, Tae-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.210-216
    • /
    • 2010
  • In this study, we propose a novel method to segment an individual tooth region in a true color image. The difference of the intensity in RGB is initially extracted and subsequent morphological reconstruction is applied to minimize the spurious segmentation regions. Multiple seeds in the tooth regions are chosen by searching regional minima and a Sobel-mask edge operations is performed to apply MCWA(Marker-Controlled Watershed Algorithm). As the results of applying MCWA transform for our proposed tooth segmentation algorithm, the individual tooth region can be resolved in a CCD tooth color image.

Color image segmentation using the possibilistic C-mean clustering and region growing (Possibilistic C-mean 클러스터링과 영역 확장을 이용한 칼라 영상 분할)

  • 엄경배;이준환
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.3
    • /
    • pp.97-107
    • /
    • 1997
  • Image segmentation is teh important step in image infromation extraction for computer vison sytems. Fuzzy clustering methods have been used extensively in color image segmentation. Most analytic fuzzy clustering approaches are derived from the fuzzy c-means (FCM) algorithm. The FCM algorithm uses th eprobabilistic constraint that the memberships of a data point across classes sum to 1. However, the memberships resulting from the FCM do not always correspond to the intuitive concept of degree of belongingor compatibility. moreover, the FCM algorithm has considerable trouble above under noisy environments in the feature space. Recently, the possibilistic C-mean (PCM) for solving growing for color image segmentation. In the PCM, the membersip values may be interpreted as degrees of possibility of the data points belonging to the classes. So, the problems in the FCM can be solved by the PCM. The clustering results by just PCM are not smoothly bounded, and they often have holes. So, the region growing was used as a postprocessing. In our experiments, we illustrated that the proposed method is reasonable than the FCM in noisy enviironments.

  • PDF

Image Segmentation Using Anisotropic Diffusion and Morphology Operation (이방성 확산과 형태학적 연산을 이용한 영상 분할)

  • Kim, Hye Suk;Cho, Jeong Rae;Lim, Suk Ja
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.2
    • /
    • pp.157-165
    • /
    • 2009
  • Existing methods for image segmentation using diffusion can't preserve contour information, or noises with high gradients become more salient as the umber of times of the diffusion increases, resulting in over-segmentation when applied to watershed. This thesis proposes a method for image segmentation by applying morphology operation together with robust anisotropic diffusion. For an input image, transformed into LUV color space, closing by reconstruction and anisotropic diffusion are applied to obtain a simplified image which preserves contour information with noises removed. With gradients computed from this simplifed images, watershed algorithm is applied. Experiments show that color images are segmented very effectively without over-segmentation.

Image Retrieval Using Entropy-Based Image Segmentation (엔트로피에 기반한 영상분할을 이용한 영상검색)

  • Jang, Dong-Sik;Yoo, Hun-Woo;Kang, Ho-Jueng
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.333-337
    • /
    • 2002
  • A content-based image retrieval method using color, texture, and shape features is proposed in this paper. A region segmentation technique using PIM(Picture Information Measure) entropy is used for similarity indexing. For segmentation, a color image is first transformed to a gray image and it is divided into n$\times$n non-overlapping blocks. Entropy using PIM is obtained from each block. Adequate variance to perform good segmentation of images in the database is obtained heuristically. As variance increases up to some bound, objects within the image can be easily segmented from the background. Therefore, variance is a good indication for adequate image segmentation. For high variance image, the image is segmented into two regions-high and low entropy regions. In high entropy region, hue-saturation-intensity and canny edge histograms are used for image similarity calculation. For image having lower variance is well represented by global texture information. Experiments show that the proposed method displayed similar images at the average of 4th rank for top-10 retrieval case.

Deep Multi-task Network for Simultaneous Hazy Image Semantic Segmentation and Dehazing (안개영상의 의미론적 분할 및 안개제거를 위한 심층 멀티태스크 네트워크)

  • Song, Taeyong;Jang, Hyunsung;Ha, Namkoo;Yeon, Yoonmo;Kwon, Kuyong;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.1000-1010
    • /
    • 2019
  • Image semantic segmentation and dehazing are key tasks in the computer vision. In recent years, researches in both tasks have achieved substantial improvements in performance with the development of Convolutional Neural Network (CNN). However, most of the previous works for semantic segmentation assume the images are captured in clear weather and show degraded performance under hazy images with low contrast and faded color. Meanwhile, dehazing aims to recover clear image given observed hazy image, which is an ill-posed problem and can be alleviated with additional information about the image. In this work, we propose a deep multi-task network for simultaneous semantic segmentation and dehazing. The proposed network takes single haze image as input and predicts dense semantic segmentation map and clear image. The visual information getting refined during the dehazing process can help the recognition task of semantic segmentation. On the other hand, semantic features obtained during the semantic segmentation process can provide cues for color priors for objects, which can help dehazing process. Experimental results demonstrate the effectiveness of the proposed multi-task approach, showing improved performance compared to the separate networks.