• Title/Summary/Keyword: color image coding

검색결과 70건 처리시간 0.027초

Color Image Coding Based on Shape-Adaptive All Phase Biorthogonal Transform

  • Wang, Xiaoyan;Wang, Chengyou;Zhou, Xiao;Yang, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • 제13권1호
    • /
    • pp.114-127
    • /
    • 2017
  • This paper proposes a color image coding algorithm based on shape-adaptive all phase biorthogonal transform (SA-APBT). This algorithm is implemented through four procedures: color space conversion, image segmentation, shape coding, and texture coding. Region-of-interest (ROI) and background area are obtained by image segmentation. Shape coding uses chain code. The texture coding of the ROI is prior to the background area. SA-APBT and uniform quantization are adopted in texture coding. Compared with the color image coding algorithm based on shape-adaptive discrete cosine transform (SA-DCT) at the same bit rates, experimental results on test color images reveal that the objective quality and subjective effects of the reconstructed images using the proposed algorithm are better, especially at low bit rates. Moreover, the complexity of the proposed algorithm is reduced because of uniform quantization.

색차 데이터 축소 기법을 사용한 BTC (Block Truncation Coding) 컬러 이미지 압축 (Block Truncation Coding using Reduction Method of Chrominance Data for Color Image Compression)

  • 조문기;윤영섭
    • 대한전자공학회논문지SD
    • /
    • 제49권3호
    • /
    • pp.30-36
    • /
    • 2012
  • BTC 압축은 간단하고 효율적인 압축 알고리즘으로 알려져 있다. 본 논문에서는, 컬러 이미지 압축을 위한 RMC-BTC 알고리즘(RMC : reduction method chrominace data)을 제안한다. RMC-BTC coding은 chrominace data를 축소시키기 위해서, 각 BTC 블록에서, chrominace data를 평균으로 표현하는 방법과, luminance 데이터 의 bit-map을 chrominace 데이터의 bit-map으로 활용하여 chrominace 데이터를 표현하는 방법을 사용하였다. 시뮬레에션 결과는 기존의 BTC 알고리즘의 PSNR과 압축비율의 비교를 통해서, 제안한 알고리즘의 효율성을 확인하였다.

Colorization-based Coding By Using Watershed Segmentation For Optimization

  • 왕핑;이병국
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2012년도 춘계학술발표대회논문집
    • /
    • pp.40-42
    • /
    • 2012
  • Colorization is a method using computer to add color to a black and white image automatically. The input is a grayscale image and some representative pixels (RPs). The RPs contain the color information for the image, and it indicates each region's color information. Colorization-based coding is a novel way for lossy image compression, it decodes a color image to get grayscale image and extracts RPs from the image. Because RPs decides the region's color and we also want small data size for image compression, form this viewpoint the paper proposes a way to get better and fewer RPs based on watershed segmentation. According to the segmentation result we also improve the original chrominance blending colorization method to save decode time and get better reconstruct image.

  • PDF

Measurement Coding for Compressive Sensing of Color Images

  • Dinh, Khanh Quoc;Trinh, Chien Van;Nguyen, Viet Anh;Park, Younghyeon;Jeon, Byeungwoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권1호
    • /
    • pp.10-18
    • /
    • 2014
  • From the perspective of reducing the sampling cost of color images at high resolution, block-based compressive sensing (CS) has attracted considerable attention as a promising alternative to conventional Nyquist/Shannon sampling. On the other hand, for storing/transmitting applications, CS requires a very efficient way of representing the measurement data in terms of data volume. This paper addresses this problem by developing a measurement-coding method with the proposed customized Huffman coding. In addition, by noting the difference in visual importance between the luma and chroma channels, this paper proposes measurement coding in YCbCr space rather than in conventional RGB color space for better rate allocation. Furthermore, as the proper use of the image property in pursuing smoothness improves the CS recovery, this paper proposes the integration of a low pass filter to the CS recovery of color images, which is the block-based ${\ell}_{20}$-norm minimization. The proposed coding scheme shows considerable gain compared to conventional measurement coding.

A Common Bitmap Block Truncation Coding for Color Images Based on Binary Ant Colony Optimization

  • Li, Zhihong;Jin, Qiang;Chang, Chin-Chen;Liu, Li;Wang, Anhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권5호
    • /
    • pp.2326-2345
    • /
    • 2016
  • For the compression of color images, a common bitmap usually is generated to replace the three individual bitmaps that originate from block truncation coding (BTC) of the R, G and B channels. However, common bitmaps generated by some traditional schemes are not the best possible because they do not consider the minimized distortion of the entire color image. In this paper, we propose a near-optimized common bitmap scheme for BTC using Binary Ant Colony Optimization (BACO), producing a BACO-BTC scheme. First, the color image is compressed by the BTC algorithm to get three individual bitmaps, and three pairs of quantization values for the R, G, and B channels. Second, a near-optimized common bitmap is generated with minimized distortion of the entire color image based on the idea of BACO. Finally, the color image is reconstructed easily by the corresponding quantization values according to the common bitmap. The experimental results confirmed that reconstructed image of the proposed scheme has better visual quality and less computational complexity than the referenced schemes.

YIQ 모델을 이용한 칼라 영상의 효율적인 프랙탈 기반 부호화 (Effective Fractal-Based Coding of Color Image Using YIQ Model)

  • 김성종;이준모;신인철
    • 전기전자학회논문지
    • /
    • 제2권2호
    • /
    • pp.185-193
    • /
    • 1998
  • 프랙탈을 기반으로 한 칼라 영상 부호화는 영상을 RGB, YIQ 나 $YC_bC_r$, 과 같은 기본적인 채널로 분리한 후, 각각의 채널을 독립적으로 프랙탈 이진 영상 부호화 기법에 적용함으로써 쉽게 부호화할 수 있다. 그러나 이 방법은 각각의 채널에 대해 부호화를 반복해야 하기 때문에 부호화 시간이 길어진다는 단점이 있다. 본 논문에서는 프랙탈 이론을 바탕으로 압축률의 향상과 부호화 시간의 단축을 동시에 이룰 수 있는 칼라 정지영상의 부호화를 위한 프랙탈 기반 부호기를 제안하였다. 제안된 알고리즘을 칼라영상에 적용하여 실험한 결과, 복원 영상의 PSNR 값이 평균적으로 $28{\sim}29[dB]$ 정도에서, 압축률이 JPEG에서 사용하는 무손실 부호화 과정을 거치지 않고도 약 28 : 1 이상으로 향상되었으며, 부호화 시간은 약 11.5 % 정도 단축할 수 있었다.

  • PDF

An Image Segmentation Technique For Very Low Bit Rate Video Coding

  • Jung, Seok-Yoon;Kim, Rin-Chul;Lee, Sang-Uk
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1997년도 Proceedings International Workshop on New Video Media Technology
    • /
    • pp.19-24
    • /
    • 1997
  • This paper describes an image segmentation technique for the object-oriented coding at very low bit rates. By noting that, in the object-oriented coding technique, each objects are represented by 3 parameters, namely, shape, motion, and color informations, we propose a segmentation technique, in which the 3 parameters are fully exploited. To achieve this goal, starting with the color space conversion and the noise reduction, the input image is divided into many small regions by the K-menas algorithm on the O-K-S color space. Then, each regions are merged, according to the shape and motion information. In simultations, it is shown that the proposed technique segments the input image into relevant objects, according to the shape and motion as well as the colors. In addition, in order to evaluate the performance of the proposed technique, we introduce the notion of the interesting regions, and provide the results of encoding the image with emphasizing the interesting regions.

  • PDF

Content Based Image Retrieval Using Combined Features of Shape, Color and Relevance Feedback

  • Mussarat, Yasmin;Muhammad, Sharif;Sajjad, Mohsin;Isma, Irum
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권12호
    • /
    • pp.3149-3165
    • /
    • 2013
  • Content based image retrieval is increasingly gaining popularity among image repository systems as images are a big source of digital communication and information sharing. Identification of image content is done through feature extraction which is the key operation for a successful content based image retrieval system. In this paper content based image retrieval system has been developed by adopting a strategy of combining multiple features of shape, color and relevance feedback. Shape is served as a primary operation to identify images whereas color and relevance feedback have been used as supporting features to make the system more efficient and accurate. Shape features are estimated through second derivative, least square polynomial and shapes coding methods. Color is estimated through max-min mean of neighborhood intensities. A new technique has been introduced for relevance feedback without bothering the user.

객체기반 부호화에서 혼합형 부호화방식을 이용한 MF(Model Failure) 객체의 색신호 부호화 (Color coding of MF(model failure) object using hybrid coding method in object based coding)

  • 김동하;이지훈;고성제;이태원
    • 전자공학회논문지S
    • /
    • 제34S권5호
    • /
    • pp.45-51
    • /
    • 1997
  • To trnsmit moving image signals by using an object vased coding technique at the rate of 8kbps~11kbps, it is very important to minimize the bit rates used for the compression of the color information of MF-objects. This paper proposes a hybrid coding method which uses the shpae adaptive coding method and the interframe reference method selectively. Gilge's shape adaptive orthogonal coidng method is utilized for shpae adaptive coding. The interfarame reference method approximates the low-passed signals of the image by gilge's shpae adaptive orthogonalization method and then refers the approximation error signals from the high frequency signal components of th eprevious frame. The proposed method achives the bit rates reduction of 17% compared to the gilge's shape adaptive orthogonalization method and 30% rduction compared to the shape adaptive DCT in average.

  • PDF

A LOSSLESS CODING SCHEME FOR BAYER COLOR FILTER ARRAY IMAGES USING BLOCK-ADAPTIVE PREDICTION

  • Abe, Toshiyuki;Matsuday, Ichiro;Itohy, Susumu
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.838-841
    • /
    • 2009
  • This paper proposes a novel lossless coding scheme for Bayer color filter array (CFA) images which are generally used as internal data of color digital cameras having a single image sensor. The scheme employs a block-adaptive prediction method to exploit spatial and spectral correlations in local areas containing different color signals. In order to allow adaptive prediction suitable for the respective color signals, four kinds of linear predictors which correspond to 2 ${\times}$ 2 samples of Bayer CFA are simultaneously switched block-by-block. Experimental results show that the proposed scheme outperforms other state-of-the-art lossless coding schemes in terms of coding efficiency for Bayer CFA images.

  • PDF