• Title/Summary/Keyword: colony blot

Search Result 85, Processing Time 0.019 seconds

BCR/ABL mRNA Targeting Small Interfering RNA Effects on Proliferation and Apoptosis in Chronic Myeloid Leukemia

  • Zhu, Xi-Shan;Lin, Zi-Ying;Du, Jing;Cao, Guang-Xin;Liu, Gang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4773-4780
    • /
    • 2014
  • Background: To investigate the effects of small interference RNA (siRNA) targeting BCR/ABL mRNA on proliferation and apoptosis in the K562 human chronic myeloid leukemia (CML) cell line and to provide a theoretical rationale and experimental evidence for its potential clinical application for anti-CML treatment. Materials and Methods: The gene sequence for BCR/ABL mRNA was found from the GeneBank. The target gene site on the BCR/ABL mRNA were selected according to Max-Planck-Institute (MPI) and rational siRNA design rules, the secondary structure of the candidate targeted mRNA was predicted, the relevant thermodynamic parameters were analyzed, and the targeted gene sequences were compared with BLAST to eliminate any sequences with significant homology. Inhibition of proliferation was evaluated by MTT assay and colony-formation inhibiting test. Apoptosis was determined by flow cytometry (FCM) and the morphology of apoptotic cells was identified by Giemsa-Wright staining. Western blotting was used to analyze the expression of BCR/ABL fusion protein in K562 cells after siRNA treatment. Results: The mRNA local secondary structure calculated by RNA structure software, and the optimal design of specific siRNA were contributed by bioinformatics rules. Five sequences of BCR/ABL siRNAs were designed and synthesized in vitro. Three sequences, siRNA1384, siRNA1276 and siRNA1786, which showed the most effective inhibition of K562 cell growth, were identified among the five candidate siRNAs, with a cell proliferative inhibitory rate nearly 50% after exposure to 12.5nmol/L~50nmol/L siRNA1384 for 24,48 and 72 hours. The 50% inhibitory concentrations ($IC_{50}$) of siRNA1384, siRNA1276 and siRNA1786 for 24hours were 46.6 nmol/L, 59.3 nmol/L and 62.6 nmol/L, respectively, and 65.668 nmol/L, 76.6 nmol/L, 74.4 nmol/L for 72 hours. The colony-formation inhibiting test also indicated that, compared with control, cell growth of siRNA treated group was inhibited. FCM results showed that the rate of cell apoptosis increased 24 hours after transfecting siRNA. The results of annexinV/PI staining indicated that the rate of apoptosis imcreased (1.53%, 15.3%, 64.5%, 57.5% and 21.5%) following treamtne with siRNAs (siRNA34, siRNA372, siRNA1384, siRNA1276 and siRNA1786). Morphological analysis showed td typical morphologic changes of apoptosis such as shrunken, fragmentation nucleus as well as "apoptotic bodies" after K562 cell exposure to siRNA. Western blot analysis showed that BCR/ABL protein was reduced sharply after a single dose of 50nmol/L siRNA transfection. Conclusions: Proliferation of K562 cells was remarkbly inhibited by siRNAs (siRNA1384, siRNA1276 and siRNA1786) in a concentration-dependent manner in vitro, with effective induction of apoptosis at a concentration of 50 nmol/L. One anti-leukemia mechanism in K562 cells appeared that BCR/ABL targeted protein was highly down-regulated. The siRNAs (siRNA1384, siRNA1276 and siRNA1786) may prove valuable in the treatment of CML.

Effects of rrhGM-CSF on Morphology and Expression of PCNA in Regenerating Rat Liver (재생 중인 흰쥐 간의 형태학적 변화 및 PCNA 발현에 미치는 rrhGM-CSF의 영향)

  • Jeong, Jin-Ju;Heo, Si-Hyun;Kim, Ji-Hyun;Yoon, Kwang-Ho;Lee, Young-Jun;Han, Kyu-Boem;Kim, Wan-Jong
    • Applied Microscopy
    • /
    • v.40 no.2
    • /
    • pp.73-80
    • /
    • 2010
  • Liver regeneration is a result of highly coordinated proliferation of hepatocytes and nonparenchymal liver cells. Partial hepatectomy (PH) is the most often used stimulus to study liver regeneration because, compared with other methods that use hepatic toxins, it is not associated with the tissue injury and inflammation, and the initiation of the regenerative stimulus is precisely defined. Granulocyte macrophage-colony stimulating factor (GM-CSF), which is a cytokine able to regulate the proliferation and differentiation of epithelial cells, was first identified as the most potent mitogen for bone marrow. Particularly, rrhGM-CSF, which is highly glycosylated and sustained longer than any other types of GM-CSF in the blood circulation, was specifically produced from rice cell culture. In this experiment, effects of rrhGM-CSF administration were evaluated in the regenerating liver after 78% PH of rats. Morphological changes induced by PH were characterized by destroyed hepatocyte plate around the central vein and enlarged nuclear cytoplasmic ratio and increased hepatocytes with two nuclei. And then, proliferation of liver cells (parenchymal and nonparenchymal) and rearrangement of plates and lobules seemed to be carried out during liver regeneration. These alterations in the experimental group preceded those of the control. Since proliferating cell nuclear antigen (PCNA) is known to be a nuclear protein maximally elevated in the S phase of proliferating cells, the protein was used as a marker of liver regeneration after PH in rats. PCNA levels by western blot analysis and immunohistology were compared between the two groups. PCNA protein expression of two groups at 12 hr and 24 hr after injury showed similar pattern. The protein expression showed the peak at 3 days in both groups, however, the protein level of the experimental group was higher than that of the control. On immunohistochemical observations, the reaction product of PCNA was localized at the nuclei of proliferating cells and the positive reaction in experimental group at 3 days was clearly stronger than that in control group. The results by Western blotting and immunohistology for PCNA showed similar pattern in terms of the protein levels. In conclusion, rrhGM-CSF administration during liver regeneration after 78% PH accelerated breakdown and restoration of the hepatic plate and expression of PCNA. These results suggest that rrhGM-CSF might play an important role during liver regeneration in rats.

Construction of the Genomic Expression Library of Bacillus anthracis for the Immunomic Analysis (면역체 분석을 위한 탄저균 유전자 발현 라이브러리의 구축)

  • Park, Moon-Kyoo;Jung, Kyoung-Hwa;Kim, Yeon-Hee;Rhie, Gi-Eun;Chai, Young-Gyu;Yoon, Jang-W.
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.21-26
    • /
    • 2010
  • As the causative agent of Anthrax, Bacillus anthracis causes an acute fatal disease in herbivores such as cattle, sheep, and horses as well as humans. The therapeutics and prevention of anthrax currently available are based on antibiotics and the live attenuated vaccine strains, which may be problematic due to the emergency of antibiotic resistant strains or residual virulence in those vaccine strains. Therefore, it has been required to develop novel therapeutics and vaccines which are safer and applicable to humans. Recently, the development of the multivalent vaccine targeting both spores and vegetative cells of B. anthracis along with anthrax toxin has been reported. In our attempts to screen potential candidates for those multivalent vaccines, the whole genomic expression library of B. anthracis was constructed in this study. To the end, the partial digests of the genomic DNA from B. anthracis (ATCC 14578) with Sau3AI were ligated with the inducible pET30abc expression vectors, resulting in approximately $1{\times}10^5$ clones in E. coli BL21(DE3). The redundancy test by DNA nucleotide sequencing was performed for the randomly selected 111 clones and found 56 (50.5%) B. anthracis genes, 17 (15.3%) vector sequences, and 38 (34.2%) unknown genes with no sequence homology by BLAST. An inducible expression of the recombinant proteins was confirmed by Western blot. Interestingly, some clones could react with the antiserum against B. anthracis. These results imply that the whole genomic library constructed in this study can be applied for analyzing the immunomes of B. anthracis.

Expression of Ku Correlates with Radiation Sensitivities in the Head and Neck Cancer Cell Lines (두경부종양 세포주에서 Ku 단백질 발현 정도에 따른 방사선 민감도)

  • Lee Sang-wook;Yu Eunsil;Yi So-Lyoung;Son Se-Hee;Kim ong Hoon;Ahn Seung Do;Shin Seong Soo;Choi Eun Kyung
    • Radiation Oncology Journal
    • /
    • v.22 no.3
    • /
    • pp.208-216
    • /
    • 2004
  • Purpose: DNA-dependent protein kinase (DNA-PK) is a serine/threonine kinase consisting of a 470 kDa catalytic subunit (DNA-PKcs) and a heterodimeric regulatory complex, called Ku, which is composed of 70 kDa(Ku 70) and 86 kDa (Ku 80) proteins. The DNA-PK has been shown to play a pivotal role in rejoining DNA double-strand-breaks (dsb) in mammalian cells. The purpose of this study is to examine the relationship between the level of Ku expression and radiation sensitivity. Methods and Materials: Nine head and neck, cancer cell lines showed various intrinsic radiation sensitivities. Among the nine, AMC-HN-3 cell was the most sensitive for X-ray irradiation and AMC-HN-9 cell was the most resistance. The most sensitive and resistant cell lines were selected and the test sensitivity of radiation and expression of Ku were measured. Radiation sensitivity was obtained by colony forming assay and Ku protein expression using Western blot analysis. Results: Ku80 increased expression by radiation, wheres Ku70 did not. Overexpression of Ku80 protein increased radiation resistance in AMC-HN9 cell line. There was a correlation between Ku8O expression and radiation resistance. Ku80 was shown to play an important role in radiation damage response. Conclusion: Induction of Ku80 expression had an important role in DNA damage repair by radiation. Ku80 expression may be an effective predictive assay of radiosensitivity on head and neck cancer.

Biological Markers as Predictors of Radiosensitivity in Syngeneic Murine Tumors (동계 마우스 종양의 방사선 감수성 예측인자로서의 생물학적 표지자)

  • Chang Sei-Kyung;Kim Sung-Hee;Shin Hyun-Soo;Seong Jin-Sil
    • Radiation Oncology Journal
    • /
    • v.24 no.2
    • /
    • pp.128-137
    • /
    • 2006
  • Purpose: We investigated whether a relationship exists between tumor control dose 50 ($TCD_{50}$) or tumor growth delay (TGD) and radiation induced apoptosis (RIA) in syngeneic murine tumors. Also we investigated the biological markers that can predict radiosensitivity in murine tumor system through analysis of relationship between $TCD_{50}$, TGD, RIA and constitutive expression levels of the genetic products regulating RIA. Materials and Methods: Syngeneic murine tumors such as ovarian adenocarcinoma, mammary carcinoma, squamous cell carcinoma, fibrosarcoma, hepatocarcinoma were used In this study. C3H/HeJ mice were bred and maintained in our specific pathogen free mouse colony and were $8{\sim}12$ weeks old when used for the experiments. The tumors, growing in the right hind legs of mice, were analyzed for $TCD_{50}$, TGD, and RIA at 8 mm in diameter. The tumors were also analyzed for the constitutive expression levels of $p53,\;p21^{WAF1/CIP1},\;BAX,\;Bcl-2,\;Bcl-X_L,\;Bcl-X_S$, and p34. Correlation analysis was peformed whether the level of RIA were correlated with $TCD_{50}$ or TGD, and the constitutive expression levels of genetic products regulating RIA were correlated with $TCD_{50}$, TGD, RIA. Results: The level of RIA showed a significant positive correlation (R=0.922, p=0.026) with TGD, and showed a trend to correlation (R=-0.848), marginally significant correlation with $TCD_{50}$ (p=0.070). It indicates that tumors that respond to radiation with high percentage of apoptosis were more radiosensitive. The constitutive expression levels of $p21^{WAF1/CIP1}$ and 34 showed a significant correlation either with $TCD_{50}$ (R=0.893, p=0.041 and R=0.904, p=0.035) or with TGD (R=-0.922, p=0.026 and R=-0.890 p=0.043). The tumors with high constitutive expression levels of $p21^{WAF1/CIP1}$ or p34 were less radiosensitive than those with low expression. Conclusion: Radiosensitivity may be predicted with the level of RIA in murine tumors. The constitutive expression levels of $p21^{WAF1/CIP1}$ or p34 can be used as biological markers which predict the radiosensitivity.