• Title/Summary/Keyword: colonic motility

Search Result 24, Processing Time 0.021 seconds

Intestinal Neuronal Dysplasia in Twins (쌍생아에서 발생한 Intestinal Neuronal Dysplasia)

  • Lim, In-Suk;Chung, Ju-Young;Choi, Myung-Jai;Kim, Sang-Woo;Kim, Hong-Ju;Kim, Jeong-Yeon
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.6 no.2
    • /
    • pp.202-207
    • /
    • 2003
  • Intestinal neuronal dysplasia (IND) is a disorder of abnormal intestinal innervation resulting in dysfunctional colonic motility. IND shares clinical features with Hirschsprung's disease but differentiated by histological findings such as hyperplasia of submucosal and myenteric plexuses, giant ganglia, ectopic ganglion cell and increased acetylcholinesterase activity in lamina propria. Although IND may exist as an isolated condition, more commonly, it occurs in association with Hirschsprung's disease. We report a case of twins affected with IND. Both children manifested with delayed passage of meconium and severe abdominal distention after birth. Barium enema in both patients showed microcolon. They underwent emergency ileostomy under the impression of total aganglionosis. But surgical biopsy specimens showed hyperganglionosis in submucosa with formation of giant ganglia. Both neonates suffers from several episodes of peudo-obstruction after the repair operation of colostomy.

  • PDF

The Antimicrobial Peptide CopA3 Inhibits Clostridium difficile Toxin A-Induced Viability Loss and Apoptosis in Neural Cells

  • Yoon, I Na;Hwang, Jae Sam;Lee, Joon Ha;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • Numerous studies have reported that enteric neurons involved in controlling neurotransmitter secretion and motility in the gut critically contribute to the progression of gut inflammation. Clostridium difficile toxins, which cause severe colonic inflammation, are also known to affect enteric neurons. Our previous study showed that C. difficile toxin A directly induces neural cell toxicities, such as viability loss and apoptosis. In the current study, we attempted to identify a potent inhibitor of toxin A-induced neural cell toxicity that may aid in managing toxin A-induced gut inflammation. In our recent study, we found that the Korea dung beetle-derived antimicrobial peptide CopA3 completely blocked neural cell apoptosis caused by okadaic acid or 6-OHDA. Here, we examined whether the antimicrobial peptide CopA3 inhibited toxin A-induced neural cell damage. In neuroblastoma SH-SY5Y cells, CopA3 treatment protected against both apoptosis and viability loss caused by toxin A. CopA3 also completely inhibited activation of the pro-apoptotic factor, caspase-3. Additionally, CopA3 rescued toxin A-induced downregulation of neural cell proliferation. However, CopA3 had no effect on signaling through ROS/p38 $MAPK/p27^{kip1}$, suggesting that CopA3 inhibits toxin A-induced neural cell toxicity independent of this well-characterized toxin A pathway. Our data further suggest that ability of CopA3 to rescue toxin A-induced neural cell damage may also ameliorate the gut inflammation caused by toxin A.

Ameliorating Effects of Nokyongdaebo-tang on Experimental Subacute Hemorrhagic Anemia in Rats (녹용대보탕 열수 추출물의 실험적으로 유발된 랫트 아급성 출혈성 빈혈에 대한 효과)

  • Kim, Jung-Ah;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.30 no.3
    • /
    • pp.1-19
    • /
    • 2017
  • Objectives: The object of this study is to observe the possible ameliorating effects of Nokyongdaebo-tang (NYDBT) on the experimental subacute hemorrhagic anemia (SHA) in rats. Methods: In the present study, SHA in rats was induced by exsanguinations from orbital plexus, and ameliorating effects of NYDBT was observed based on the changes of body and hematopoietic organ (spleen, liver and femur) weights, red blood cell (RBC) related hematological values, smear cytology, histopathological changes and immunohistochemistrical analysis of hematopoietic stem cells in the femur bone marrow, liver and spleen. In addition, the gastrointestinal motility and the surface mucosa thicknesses of remnant fecal pellets in the colon lumen, mucosa thicknesses and the mucous producing cell numbers in the colonic mucosa were analyzed to observe the digestive disorders, especially on the constipation, the major discomfort problems in iron supplement. Results: SHA related abnormal anemic signs were markedly and dose-dependently inhibited by oral administration of NYDBT 500, 250 and 125 mg/kg in a condition of this experiment. In addition, no meaningful changes on the gastrointestinal motilities and mucous component on the colon and remnant feces were noticed in all three different dosages of NYDBT treated rats as compared with intact vehicle and SHA control rats in this study. Conclusions: It, therefore, is expected that NYDBT will be promising as a novel alternative hematopoietic and therapeutic agent for anemia.

Effects of Herbal medicines in Pacemaker Potential of Colonic Intestinal Interstitial cells of Cajal in mice (생쥐 대장 카할세포의 자발적 탈분극에서 한약의 효과에 관한 비교연구)

  • Na Ri, Choi;Haejeong, Jeong;Woo-gyun, Choi;Byung Joo, Kim
    • Herbal Formula Science
    • /
    • v.31 no.1
    • /
    • pp.11-19
    • /
    • 2023
  • Objectives : The purpose of this study was to examine the effects of herbal medicines on pacemaker potentials of large intestinal interstitial Cells of Cajal (ICC) in mice. Methods : We made the ICC culture in large intestine in mice and used the electrophysiological method to record pacemaker potentials. Also we used MTT assay to check cell viability and examined the ICC protein expression by western blot. Results : 1.Glycyrrhiza uralensis Fischer (GF) (50-150 ㎍/ml) induced pacemaker depolarization and decreased frequency with concentration-dependent manners. EC50 is 58.95 ㎍/ml. Angelica gigas (AG) (50-200 ㎍/ml) induced pacemaker depolarization and decreased frequency with concentration-dependent manners. EC50 is 77.22 ㎍/ml. Poncirus fructus (PF) (10-100 ㎍/ml) induced pacemaker depolarization and decreased frequency with concentration-dependent manners. EC50 is 13.39 ㎍/ml. Citrus unshiu S. Marcov. (CU) (10-500 ㎍/ml) induced pacemaker depolarization and decreased frequency with concentration-dependent manners. EC50 is 139.80 ㎍/ml. Gardenia jasminoides J. Ellis (GJ) (100-500 ㎍/ml) induced pacemaker depolarization and decreased frequency with concentration-dependent manners. EC50 is 78.70 ㎍/ml. Coptis chinensis (CC) (100-1000 ㎍/ml) induced pacemaker depolarization and decreased frequency with concentration-dependent manners. EC50 is 138.10 ㎍/ml. Scutellaria baicalensis (SB) (10-100 ㎍/ml) had no effects on pacemaker potentials and decreased frequency with concentration-dependent manners. IC50 is 18.34 ㎍/ml. Atractylodes macrocephala koidzumi (AM) (10-100 ㎍/ml) induced pacemaker hyperpolarizations and decreased frequency with concentration-dependent manners. IC50 is 18.54 ㎍/ml. 2. PF, SB and AM had no effects on cell death in large ICC. 3. PF increased the ANO1 and c-kit protein expression and SB and AM increased the c-kit protein expression in large ICC. Conclusions : These results suggest that PF, SB, and AM are likely to be the optimal combination of herbal medicines that can be used to treat diseases such as gastrointestinal motility disorders such as irritable bowel syndrome.