• 제목/요약/키워드: colon tumor

검색결과 474건 처리시간 0.026초

레트로바이러스를 이용한 Tissue Inhibitor of Metalloproteinase-2 유전자 발현이 대장암 세포의 전이 및 종양형성에 미치는 영향 (Anti-tumorigenic and Invasive Activity of Colon Cancer Cells Transfected with the Retroviral Vector Encoding Tissue Inhibitor of Metalloproteinase-2)

  • 오일웅;정자영;장석기;이수해;김연수;손여원
    • 약학회지
    • /
    • 제48권3호
    • /
    • pp.189-196
    • /
    • 2004
  • Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) playa key role in tumor invasion and metastasis. As an inhibitor of MMP-2, TIMP-2 is known to block both the invasive and metastatic behavior of cancer cells, and decrease tumor growth activity. We performed this study to investigate the effects of TIMP-2 over-expression induced by retroviral mediated gene transfer in vitro and in vivo. The human colon cancer cell line SW480 was transfected with the retroviral vector encoding TIMP-2. The effects of TIMP-2 over-expression were analyzed by invasion assay and gelatinase activity test in colon cancer cells and tumorigencity in nude mice. In evaluation of the transfection efficiency of the retroviral vector encoding TIMP-2 in colon cancer cells, we confirmed up-regulation of TIMP-2 expression dependent on the time of cell culture. In addition, inhibition of MMP-2 expression in SW480/TIMP-2 was shown by gelatin zymography. In the in vitro invasion assay SW480/TIMP-2 inhibited the invasiveness on matrigel coated with collagen. To determine whether TIMP-2 can modulate in vivo tumorigenicity and metastasis, SW480/TIMP-2 cells were injected subcutaneously in nude mice. The tumor mass formation of SW480/TIMP-2 cells in nude mice was markedly decreased compared to nontransfected cancer cells. These results showed that colon cancer cells transfected with the retroviral vector encoding TIMP-2 inhibits the invasiveness in vitro and tumorigenicity in vivo.

Effect of Perilla Oil Rich in $\alpha$-Linolenic Acid on Colon Tumor Incidence, Plasma Thromboxane B2 Level and Fatty Acid Profile of Colonic Mucosal Lipids in Chemical Carcinogen-Treated Rats

  • Park Hyun Suh
    • Journal of Nutrition and Health
    • /
    • 제26권7호
    • /
    • pp.829-838
    • /
    • 1993
  • This study was designed to compare the effect of different dietary fats on the incidence of colorectal tumor, the level of plasma thromboxane B2(TXB2) and fatty acid profiles of platelet and colonic mucosal lipids in N - methyl - N - nitro - N - nitrosoguanidine(MNNG) - treated rats. Male Sprague Dawley rats, at 8 weeks old, were divided into 2 groups and infused intrarectally with saline(control group) or with 2mg MNNG(carcinogen-treated group) twice a week for 3 weeks. Each group was again divided into 4 groups and fed one of four diets(BT, CO, PO, FO) containing dietary fat at 9%(w/w) level for 37 weeks, Dietary fats were beef tallow(7.2%)+corn oil(1.8%) for BT, corn oil(9.0%) for CO, perilla oil(9.0%) for PO, fish oil (6.5%)+corn oil (2.5%) for FO diets. MNNG-treated rats had colonic tumor, while no tumors(adenocarcinoma and adenoma) than others. Tumor sizes in BT-MNNG rats ranged from 2mm papillary form to 15mm of polypoid. However, the size of tumors in PO-MNNG or FO-MNNG rats could not be measured by gross examination. BT-MNNG and CO-MNNG groups were higher in the level of plasma TXB2 and the ratio of c20 : 4/c20 :5 platelet. PO-MNNG groups were lower in the ratio of c20 : 4/c20 : 5(p<0.05) in fatty acid of colonic mucosal lipids suggesting that perilla oil and fish oil could reduce the level of PGE2 and TXB2 by modifying its precursor content and restrain tumor promotion in colon. Effect of perilla oil rich in $\alpha$-linolenic acid on colon carcinogenesis was similar to that of fish oil and thus perilla oil could have a protective effect against colon cancer possibly by inhibiting the production of arachidonic acid metabolite.

  • PDF

전이를 동반한 진행성대장암의 항암 치료에 대한 접근 (Access of Anti-cancer Treatment for Advanced Colon Cancer with Metastasis)

  • 김현건
    • Journal of Digestive Cancer Research
    • /
    • 제1권1호
    • /
    • pp.6-16
    • /
    • 2013
  • 식생활의 서구화와 대장암 검진의 증가로 인하여 국내의 대장암 유병률은 지속적으로 증가하고 있으며, 최근 보고에 의하면 남자에서는 종양 발생률 2위, 여자에서는 종양 발생률의 3위를 차지하고 있다. 비록 대장내시경이 대장암의 진단과 선별검사에 아주 효과적인 방법이지만, 여전히 대장암의 20-25%는 이미 진단 당시에 전이를 동반하고 있는 것으로 되어 있다. 최근 10년 동안 이러한 전이성대장암의 고식적인 치료로 irinotecan과 oxaliplatin 등의 약제들의 개발과 이들의 다양한 조합에 관련된 연구들이 보고되어 왔으며, 분자생물학적인 발전에 힘입은 표적 치료제의 개발과 이에 대한 다양한 연구들은 향후에도 진행성대장암 환자들의 종양 반응률과 생존기간을 증가시킬 것으로 기대된다.

  • PDF

대장암(CT 26) 생쥐에서 녹차추출물 음용에 의한 시스플라틴 항암작용 증강효과 (Potentiating Dietary Green Tea Extracts Anti-Tumor Activity of Cisplatin in BALB/c Mice Bearing CT26 Colon Carcinoma)

  • 이병래;박평심
    • 한국식품영양과학회지
    • /
    • 제41권8호
    • /
    • pp.1100-1105
    • /
    • 2012
  • 본 실험에서는 녹차추출물이 항암화학요법제의 항암작용 증강제로서의 이용가능성을 추정하기 위하여 광범위 항암화학요법제인 시스플라틴의 항암작용에 미치는 녹차추출물의 영향을 생쥐 대장암세포를 이용하여 관찰한 결과, 생쥐대장암세포인 CT26 세포를 배양하여 녹차추출물이나 EGCG을 투여하면 시스플라틴에 의한 세포독성이 증가되었는데, 시스플라틴의 세포독성에 미치는 EGCG와 녹차추출물의 효과 차이는 없었다. 생쥐에 CT26 세포를 주사하여 유발된 종양의 성장이 시스플라틴군보다 시스플라틴+녹차추출물 병합 투여로 현저히 감소되었다. 이상의 결과 녹차추출물은 화학요법제인 시스플라틴과 병합 투여할 경우 화학요법제 단독 투여 시보다 대장암 세포의 활성도 감소가 더 크고, 생쥐대장암의 크기를 감소시키는 작용도 더 크기 때문에 녹차추출물을 화학요법제와 병행투여하면 항암치료 효과가 증가될 것으로 생각된다. 따라서 녹차추출물은 항암화학요법제에 의한 암치료에서 치료효과를 증강시킬 수 있는 보조제로서 이용될 수 있을 것으로 기대되며, 이러한 효과를 입증하기 위한 더 많은 연구가 있어야 할 것으로 사료된다.

진행된 암 동물모델에서의 리포좀 포집 PALA의 항암 치료 효과 (Therapeutic Potency of N-(Phosphonacetyl)-L-Aspartic Acid in Liposome in Established Tumor Bearing Mice)

  • 김진석
    • Journal of Pharmaceutical Investigation
    • /
    • 제30권2호
    • /
    • pp.127-131
    • /
    • 2000
  • Previously, we have reported an antitumor efficacy of liposomal N-(phosphon-acetyl)-L-aspartic acid (or PALA) in C-26 tumor bearing Balb/c mice, where PALA in liposome was administered one day after tumor inoculation. In this report, we have investigated the therapeutic potency of liposomal formulation of PALA, which was administered eight days after tumor inoculation in the same C-26 tumor bearing mice. The C-26 murine colon tumor inoculated mice were randomized for the in vivo therapy and the survival was measured after a single intraperitoneal injection of the drug. When the therapy was initiated eight days after tumor inoculation, DSPC-PALA at 150 mg/kg resulted in a significant increase in median survival time (MST) of 56% over the control group which received MES/HEPES buffer alone. However, none of the free PALA and DSPG-PALA liposome doses caused a statistically significant increase in MST over control group at the 95% confidence level. At 750 mg/kg dose, free PALA caused a marginally significant improvement in MST by 34%, but both 375 mg/kg and 150 mg/kg doses of free PALA caused only a 2% and a 4% increase in MST, respectively. These results show that PALA in neutrally charged liposome can exhibit considerably greater potency than free PALA in established C-26 tumor bearing mice.

  • PDF

종양 세포 용해액에 따른 수지상세포 유도 항원 특이 면역반응 차이의 기전 연구 (Mechanism of Differential Ag-specific Immune Induction by Different Tumor Cell Lysate Pulsed DC)

  • 이강은;손혜진;김명주;백소영;이현아
    • IMMUNE NETWORK
    • /
    • 제6권3호
    • /
    • pp.145-153
    • /
    • 2006
  • Background: Tumor cell lysate has been considered as a preferential antigen source for the therapeutic dendritic cell pulsing. Our experiences with in vivo study with animal tumor model indicate the tumor cell lysate dependent differential effect of DC therapy. Our previous data show that MC38 lysate pulsed-DC induced stronger ag-specific immunity than CT26 lysate pulsed-DC in vitro. In this study we tried to reveal the mechanism for differential induction of ag-specific immunity of different colon cancer cell lysate pulsed-DCs. Methods: MC38 and CT26 cell lines were prepared as lysate by freezing-thawing procedure. Tumor cell antigenicity was confirmed by detecting the surface expression of MHC I/II & B7.1/2 molecules. IL-10, IL-12 and TGF-beta in the tumor cell lysate were detected by ELISA and the presence of heat shock proteins were analysed by western blotting. Results: The secretion of IL-10, a immune-inhibitory cytokine was about 470% higher in CT26 lysate than in MC38. Hsp 70 was detected only in the MC38 lysate but not in the CT26. On the other hand, Hsp 60 and 90 expression were not different in two colon cancer cell lysates. Conclusion: In two different colon cancer cell lysate, immune inhibitory IL-10 (higher in CT26) and Hsp70 (MC38 superiority) were differentially expressed. These data indicate that higher agspecific immunity induction by MC38 lysate pulsed-DC may due to the expression of hsp70 and lower secretion of IL-10, a immune-inhibitory cytokine than CT26 lysate. The significance of other cytokine and the surface marker expression will be discussed.

Antitumor Activity of the Korean Mistletoe Lectin is Attributed to Activation of Macrophages and NK Cells

  • Yoon, Tae-Joon;Yoo, Yung-Choon;Kang, Tae-Bong;Song, Seong-Kyu;Lee, Kyung-Bok;Her, Erk;Song, Kyung-Sik;Kim, Jong-Bae
    • Archives of Pharmacal Research
    • /
    • 제26권10호
    • /
    • pp.861-867
    • /
    • 2003
  • Inhibitory effect of the lectins (KML-C) isolated from Korean mistletoe (KM; Viscum album coloratum) on tumor metastases produced by murine tumor cells (B16-BL6 melanoma, colon 26M3.1 carcinoma and L5178Y-ML25 lymphoma cells) was investigated in syngeneic mice. An intravenous (i.v.) administration of KML-C (20-50 ng/mouse) 2 days before tumor inoculation significantly inhibited lung metastases of both B16-BL6 and colon 26-M3.1 cells. The prophylactic effect of 50 ng/mouse of KML-C on lung metastasis was almost the same with that of 100 $\mu$ g/mouse of KM. Treatment with KML-C 1 day after tumor inoculation induced a significant inhibition of not only the experimental lung metastasis induced by B16-BL6 and colon 26M3.1 cells but also the liver and spleen metastasis of L5178Y-ML25 cells. Furthermore, multiple administration of KML-C given at 3 day-intervals after tumor inoculation led to a significant reduction of lung metastasis and suppression of the growth of B16-BL6 melanoma cells in a spontaneous metastasis model. In an assay for natural killer (NK) cell activity. i.v. administration of KML-C (50 ng/mouse) significantly augmented NK cytotoxicity against Yac-1 tumor cells 2 days after KML-C treatment. In addition, treatment with KML-C (50 ng/mouse) induced tumoricidal activity of peritoneal macrophages against B16-BL6 and 3LL cells. These results suggest that KML-C has an immunomodulating activity to enhance the host defense system against tumors, and that its prophylactic and therapeutic effect on tumor metastasis is associated with the activation of NK cells and macrophages.

Increased Antitumor Immunity of Mouse GM-CSF in Mouse Colon Tumor (CT-26) Model

  • Kim, Mi Kyung;Lee, Yu Kyoung;Lee, Yeon Sook;Hwang, Tae Ho
    • 대한의생명과학회지
    • /
    • 제19권4호
    • /
    • pp.303-309
    • /
    • 2013
  • Oncolytic vaccinia virus is an engineered vaccinia virus that selectively destroys cancer cells and induces tumor immune response. Oncolytic vaccinia expressing mouse GM-CSF showed cytotoxic activity against various kinds of cancer cells when oncolytic vaccinia virus expressing human GM-CSF and mouse GM-CSF is intravenously administered in the mouse CT26 colon tumor model. Cancer cells treated with isolated immunoglobulin G from the serum with complement showed these cytotoxic activity and complement observed dose-dependent cytotoxic effect. These results suggest that oncolytic vaccinia virus expressing mouse GM-CSF can increase oncolytic vaccinia virus by inducing anticancer antibody in a mouse tumor model. Further studies are needed on antitumor immunity of GM-CSF.

The involvement of Parkin-dependent mitophagy in the anti-cancer activity of Ginsenoside

  • Sun, Xin;Hong, Yeting;Shu, Yuhan;Wu, Caixia;Ye, Guiqin;Chen, Hanxiao;Zhou, Hongying;Gao, Ruilan;Zhang, Jianbin
    • Journal of Ginseng Research
    • /
    • 제46권2호
    • /
    • pp.266-274
    • /
    • 2022
  • Colon cancer, the third most frequent occurred cancer, has high mortality and extremely poor prognosis. Ginsenoside, the active components of traditional Chinese herbal medicine Panax ginseng, exerts antitumor effect in various cancers, including colon cancer. However, the detailed molecular mechanism of Ginsenoside in the tumor suppression have not been fully elucidated. Here, we chose the representative ginsenoside Rg3 and reported for the first time that Rg3 induces mitophagy in human colon cancer cells, which is responsible for its anticancer effect. Rg3 treatment leads to mitochondria damage and the formation of mitophagosome; when autophagy is inhibited, the clearance of damaged mitochondria can be reversed. Next, our results showed that Rg3 treatment activates the PINK1-Parkin signaling pathway and recruits Parkin and ubiquitin proteins to mitochondria to induce mitophagy. GO analysis of Parkin targets showed that Parkin interacts with a large number of mitochondrial proteins and regulates the molecular function of mitochondria. The cellular energy metabolism enzyme GAPDH is validated as a novel substrate of Parkin, which is ubiquitinated by Parkin. Moreover, GAPDH participates in the Rg3-induced mitophagy and regulates the translocation of Parkin to mitochondria. Functionally, Rg3 exerts the inhibitory effect through regulating the nonglycolytic activity of GAPDH, which could be associated with the cellular oxidative stress. Thus, our results revealed GAPDH ubiquitination by Parkin as a crucial mechanism for mitophagy induction that contributes to the tumor-suppressive function of ginsenoside, which could be a novel treatment strategy for colon cancer.

Identification of Selective STAT1 Inhibitors by Computational Approach

  • Veena Jaganivasan;Dona Samuel Karen;Bavya Chandrasekhar
    • 통합자연과학논문집
    • /
    • 제16권3호
    • /
    • pp.81-95
    • /
    • 2023
  • Colorectal cancer is one of the most common types of cancer worldwide, ranking third after lung and breast cancer in terms of global prevalence. With an expected 1.93 million new cases and 935,000 deaths in 2020, it is more prevalent in males than in women. Evidence has shown that during the later stages of colon cancer, STAT1 promotes tumor progression by promoting cell survival and resistance to chemotherapy. Recent studies have shown that inhibiting STAT1 pathway leads to a reduction in tumor cell proliferation and growth, and can also promote apoptosis in colon cancer cells. One of the recent approaches in the field of drug discovery is drug repurposing. In drug repurposing approach we have virtually screened FDA database against STAT1 protein and their interactions have been studied through Molecular docking. Cross docking was performed with the top 10 compounds to be more specific with STAT1 comparing the affinity with STAT2, STAT3, STAT4, STAT5a, STAT5b and STAT6. The drugs that showed higher affinity were subjected to Conceptual - Density functional theory. Besides, the Molecular dynamic simulation was also carried out for the selected leads. We also validated in-vitro against colon cancer cell lines. The results showed mainly Acetyldigitoxin has shown better binding to the target. From this study, we can predict that the drug Acetyldigitoxin has shown noticeable inhibitory efficiency against STAT1, which in turn can also lead to the reduction of tumor cell growth in colon cancer.