• 제목/요약/키워드: collocated sensor

검색결과 43건 처리시간 0.017초

Online correction of drift in structural identification using artificial white noise observations and an unscented Kalman Filter

  • Chatzi, Eleni N.;Fuggini, Clemente
    • Smart Structures and Systems
    • /
    • 제16권2호
    • /
    • pp.295-328
    • /
    • 2015
  • In recent years the monitoring of structural behavior through acquisition of vibrational data has become common practice. In addition, recent advances in sensor development have made the collection of diverse dynamic information feasible. Other than the commonly collected acceleration information, Global Position System (GPS) receivers and non-contact, optical techniques have also allowed for the synchronous collection of highly accurate displacement data. The fusion of this heterogeneous information is crucial for the successful monitoring and control of structural systems especially when aiming at real-time estimation. This task is not a straightforward one as measurements are inevitably corrupted with some percentage of noise, often leading to imprecise estimation. Quite commonly, the presence of noise in acceleration signals results in drifting estimates of displacement states, as a result of numerical integration. In this study, a new approach based on a time domain identification method, namely the Unscented Kalman Filter (UKF), is proposed for correcting the "drift effect" in displacement or rotation estimates in an online manner, i.e., on the fly as data is attained. The method relies on the introduction of artificial white noise (WN) observations into the filter equations, which is shown to achieve an online correction of the drift issue, thus yielding highly accurate motion data. The proposed approach is demonstrated for two cases; firstly, the illustrative example of a single degree of freedom linear oscillator is examined, where availability of acceleration measurements is exclusively assumed. Secondly, a field inspired implementation is presented for the torsional identification of a tall tower structure, where acceleration measurements are obtained at a high sampling rate and non-collocated GPS displacement measurements are assumed available at a lower sampling rate. A multi-rate Kalman Filter is incorporated into the analysis in order to successfully fuse data sampled at different rates.

Validation of Sea Surface Temperature (SST) from Satellite Passive Microwave Sensor (GPM/GMI) and Causes of SST Errors in the Northwest Pacific

  • Kim, Hee-Young;Park, Kyung-Ae;Chung, Sung-Rae;Baek, Seon-Kyun;Lee, Byung-Il;Shin, In-Chul;Chung, Chu-Yong;Kim, Jae-Gwan;Jung, Won-Chan
    • 대한원격탐사학회지
    • /
    • 제34권1호
    • /
    • pp.1-15
    • /
    • 2018
  • Passive microwave sea surface temperatures (SST) were validated in the Northwest Pacific using a total of 102,294 collocated matchup data between Global Precipitation Measurement (GPM) / GPM Microwave Sensor(GMI) data and oceanic in-situ temperature measurements from March 2014 to December 2016. A root-mean-square (RMS) error and a bias error of the GMI SST measurements were evaluated to $0.93^{\circ}C$ and $0.05^{\circ}C$, respectively. The SST differences between GMI and in-situ measurements were caused by various factors such as wind speed, columnar atmospheric water vapor, land contamination near coastline or islands. The GMI SSTs were found to be higher than the in-situ temperature measurements at low wind speed (<6 m/s) during the daytime. As the wind speed increased at night, SST errors showed positive bias. In addition, other factors, coming from atmospheric water vapor, sensitivity degradation at a low temperature range, and land contamination, also contributed to the errors. One of remarkable characteristics of the errors was their latitudinal dependence with large errors at high latitudes above $30^{\circ}N$. Seasonal characteristics revealed that the errors were most frequently observed in winter with a significant positive deviation. This implies that SST errors tend to be large under conditions of high wind speeds and low SSTs. Understanding of microwave SST errors in this study is anticipated to compensate less temporal capability of Infrared SSTs and to contribute to increase a satellite observation rate with time, especially in SST composite process.

위성기반 GK2A의 대기운동벡터와 Aeolus/ALADIN 바람 비교 (Comparison of Wind Vectors Derived from GK2A with Aeolus/ALADIN)

  • 신혜민;안명환;김지수;이시혜;이병일
    • 대한원격탐사학회지
    • /
    • 제37권6_1호
    • /
    • pp.1631-1645
    • /
    • 2021
  • 세계 최초 능동형 라이더 센서 Atmospheric Laser Doppler Instrument (ALADIN)의 바람 자료와 한국형 수치예보모델에 바람 자료로 활용되고 있는 Geostationary Korea Multi Purpose Satellite 2A (GK2A)의 대기운동벡터의 자료를 비교함으로써 두 위성의 바람 자료의 특징을 분석하였다. 2019년 9월부터 20220년 8월 1년의 자료를 ALADIN의 미(Mie)채널과 GK2A 적외채널에 대하여 비교한 결과 수집된 자료는 177,681개이며 평균 제곱근 오차(Root Mean Square Error; RMSE)는 3.73 m/s, 상관계수는 0.98이다. 상세한 분석을 위해 위도와 고도를 고려하여 비교한 결과, 대부분의 위도에서 표준화된 평균 제곱근 오차(Normalized Root Mean Squared Error; NRMSE)가 0.2~0.3으로 두 바람 자료가 일치하지만 상층, 중층의 경우 저위도지역에서, 하층의 경우 남반구 특정 위도(30°S-15°S)에서 0.4 이상으로 큰 값을 가진다. 이러한 결과는 계절에 상관없이 수증기채널, 가시채널에서도 동일하게 나타나며 채널 별 특징과 계절별 특징은 두드러지게 나타나지 않는다. 두 바람 자료 간에 차이가 큰 위도 영역에 대하여 구름의 분포를 확인해본 결과, 대기운동벡터의 고도 할당 정확도를 낮출 수 있는 권운 이나 적운이 다른 위도에 비해 더 많이 분포하고 있다. 이러한 특성에 따라, 정확한 고도 할당이 어려워 대기운동벡터의 오차가 크게 나타나는 남반구와 저위도 영역에서 ALADIN 바람 자료는 기존 대기운동벡터의 바람 정보를 보완함으로써 수치예보모델에 긍정적인 영향을 미칠 수 있음을 제시한다.