• Title/Summary/Keyword: collision-free trajectory

Search Result 44, Processing Time 0.025 seconds

Path Planning for Cleaning Robots: A Graph Model Approach

  • Yun, Sang-Hoon;Park, Se-Hun;Park, Byung-Jun;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.120.3-120
    • /
    • 2001
  • We propose a new method of path planning for cleaning robots. Path planning problem for cleaning robots is different from conventional path planning problems in which finding a collision-free trajectory from a start point to a goal point is focused. In the case of cleaning robots, however, a planned path should cover all area to be cleaned. To resolve this problem in a systematic way, we propose a method based on a graph model as follows: at first, partition a given map into proper regions, then transform a divided region to a vertex and a connectivity between regions to an edge of a graph. Finally, a region is divided into sub-regions so that the graph has a unary tree which is the simplest Hamilton path. The effectiveness of the proposed method is shown by computer simulation results.

  • PDF

A Study on Path Planning Algorithm of a Mobile Robot for Obstacle Avoidance using Optimal Design Method

  • Tran, Anh-Kim;Suh, Jin-Ho;Kim, Kwang-Ju;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.168-173
    • /
    • 2003
  • In this paper, we will present a deeper look on optimal design methods that are related to path-planning for a mobile robot. To control the motion of a mobile robot in a clustered environment, it's necessary to know a suitable trajectory assuming certain start and goal point. Up to now, there are many literatures that concern optimal path planning for an obstacle avoided mobile robot. Among those literatures, we have chosen 2 novel methods for our further analysis. The first approach [4] is based on HJB(Hamilton-Jacobi-Bellman) equation whose solution is the return-function that helps to generate a shortest path to the goal. The later [5] is called polynomial-path-planning approach, in this method, a shortest polynomial-shape path would become a solution if it was a collision-free path. The camera network plays the role as sensors to generate updated map which locates the static and dynamic objects in the space. Therefore, the exhibition of both path planning and dynamic obstacle avoidance by the updated map would be accomplished simultaneously. As we mentioned before, our research will include the motion control of a true mobile robot on those optimal planned paths which were generated by above algorithms. Base on the kinematic and dynamic simulation results, we can realize the affection of moving speed to the stable of motion on each generated path. Also, we can verify the time-optimal trajectory through velocity tuning. To simplify for our analysis, we assumed the obstacles are cylindrical circular objects with the same size.

  • PDF

Characteristics of Droplet Properties in the Two-Phase Spray into a Subsonic Cross Flow

  • Lee, I.C.;Cho, W.J.;Koo, J.Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.358-363
    • /
    • 2008
  • The spray cross-section characteristics of two-phase spray that using external-mixing nozzle injected into a subsonic cross flow were experimentally studied with various ALR ratio that is $0{\sim}59.4%$. Suction type wind tunnel was used and experiments were conducted to ambient environment. Several plain orifice nozzles with L/d of 30 and orifice diameter of 0.5 mm and orifice length 1.5 mm were tested. Free stream velocity profiles at the injection location were measured using hot wire. Spray images were captured to study collision point and column trajectory. Phase Doppler particle analyzer(PDPA) was utilized to quantitatively measuring droplet SMD, volume flux. Measuring probe of PDPA positions was moved 3-way transverse machine. SMD distributions were layered structure and peaked at the top of the spray plume and low value at bottom of the spray. Volume flux of spray was distributed to the two side region and volume flux quantity decreased when ALR ratio increased. It was found that the perpendicularly injected two-phase spray jet of external mixing into a cross flow showing that mistlike spray moved away from the test section bottom region.

  • PDF

Development of Survivability Analysis Program for Atmospheric Reentry (지구 재진입 파편 생존성 분석 프로그램 개발)

  • Sim, Hyung-Seok;Choi, Kyu-Sung;Ko, Jeong-Hwan;Chung, Eui-Seung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.156-165
    • /
    • 2015
  • A survivability-analysis program has been developed to analyze the ground collision risk of atmospheric reentry objects, such the upper stages of a launch vehicle or satellites, which move at or near the orbital velocity. The aero-thermodynamic load during the free fall, the temperature variation due to thermal load, and the phase shift after reaching the melting point are integrated into the 3 degree-of-freedom trajectory simulation of the reentry objects to analyze the size and weight of its debris impacting the ground. The analysis results of the present method for simple-shaped objects are compared with the data predicted by similar codes developed by NASA and ESA. Also, the analysis for actual reentry orbital objects has been performed, of which results are compared with the measurement data.