• 제목/요약/키워드: collision prediction and detection

검색결과 10건 처리시간 0.028초

A robust collision prediction and detection method based on neural network for autonomous delivery robots

  • Seonghun Seo;Hoon Jung
    • ETRI Journal
    • /
    • 제45권2호
    • /
    • pp.329-337
    • /
    • 2023
  • For safe last-mile autonomous robot delivery services in complex environments, rapid and accurate collision prediction and detection is vital. This study proposes a suitable neural network model that relies on multiple navigation sensors. A light detection and ranging technique is used to measure the relative distances to potential collision obstacles along the robot's path of motion, and an accelerometer is used to detect impacts. The proposed method tightly couples relative distance and acceleration time-series data in a complementary fashion to minimize errors. A long short-term memory, fully connected layer, and SoftMax function are integrated to train and classify the rapidly changing collision countermeasure state during robot motion. Simulation results show that the proposed method effectively performs collision prediction and detection for various obstacles.

레이져 스캐너를 이용한 전방 충돌 예측 알고리즘 개발 (Development of a Frontal Collision Detection Algorithm Using Laser Scanners)

  • 이동휘;한광진;조상민;김용선;허건수
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.113-118
    • /
    • 2012
  • Collision detection plays a key role in collision mitigation system. The malfunction of the collision mitigation system can result in another dangerous situation or unexpected feeling to driver and passenger. To prevent this situation, the collision time, offset, and collision decision should be determined from the appropriate collision detection algorithm. This study focuses on a method to determine the time to collision (TTC) and frontal offset (FO) between the ego vehicle and the target object. The path prediction method using the ego vehicle information is proposed to improve the accuracy of TTC and FO. The path prediction method utilizes the ego vehicle motion data for better prediction performance. The proposed algorithm is developed based on laser scanner. The performance of the proposed detection algorithm is validated in simulations and experiments.

Fundamental Research for Video-Integrated Collision Prediction and Fall Detection System to Support Navigation Safety of Vessels

  • Kim, Bae-Sung;Woo, Yun-Tae;Yu, Yung-Ho;Hwang, Hun-Gyu
    • 한국해양공학회지
    • /
    • 제35권1호
    • /
    • pp.91-97
    • /
    • 2021
  • Marine accidents caused by ships have brought about economic and social losses as well as human casualties. Most of these accidents are caused by small and medium-sized ships and are due to their poor conditions and insufficient equipment compared with larger vessels. Measures are quickly needed to improve the conditions. This paper discusses a video-integrated collision prediction and fall detection system to support the safe navigation of small- and medium-sized ships. The system predicts the collision of ships and detects falls by crew members using the CCTV, displays the analyzed integrated information using automatic identification system (AIS) messages, and provides alerts for the risks identified. The design consists of an object recognition algorithm, interface module, integrated display module, collision prediction and fall detection module, and an alarm management module. For the basic research, we implemented a deep learning algorithm to recognize the ship and crew from images, and an interface module to manage messages from AIS. To verify the implemented algorithm, we conducted tests using 120 images. Object recognition performance is calculated as mAP by comparing the pre-defined object with the object recognized through the algorithms. As results, the object recognition performance of the ship and the crew were approximately 50.44 mAP and 46.76 mAP each. The interface module showed that messages from the installed AIS were accurately converted according to the international standard. Therefore, we implemented an object recognition algorithm and interface module in the designed collision prediction and fall detection system and validated their usability with testing.

기계학습을 이용한 Joint Torque Sensor 기반의 충돌 감지 알고리즘 비교 연구 (A Comparative Study on Collision Detection Algorithms based on Joint Torque Sensor using Machine Learning)

  • 조성현;권우경
    • 로봇학회논문지
    • /
    • 제15권2호
    • /
    • pp.169-176
    • /
    • 2020
  • This paper studied the collision detection of robot manipulators for safe collaboration in human-robot interaction. Based on sensor-based collision detection, external torque is detached from subtracting robot dynamics. To detect collision using joint torque sensor data, a comparative study was conducted using data-based machine learning algorithm. Data was collected from the actual 3 degree-of-freedom (DOF) robot manipulator, and the data was labeled by threshold and handwork. Using support vector machine (SVM), decision tree and k-nearest neighbors KNN method, we derive the optimal parameters of each algorithm and compare the collision classification performance. The simulation results are analyzed for each method, and we confirmed that by an optimal collision status detection model with high prediction accuracy.

관절 정보를 이용한 토크 추정 방식의 트랜스포머 기반 로봇 충돌 검출 방법 (Transformer based Collision Detection Approach by Torque Estimation using Joint Information)

  • 박지원;임대규;박수민;박현준
    • 로봇학회논문지
    • /
    • 제19권3호
    • /
    • pp.266-273
    • /
    • 2024
  • With the rising interaction between robots and humans, detecting collisions has become increasingly vital for ensuring safety. In this paper, we propose a novel approach for detecting collisions without using force torque sensors or tactile sensors, utilizing a Transformer-based neural network architecture. The proposed collision detection approach comprises a torque estimator network that predicts the joint torque in a free-motion state using Synchronous time-step encoding, and a collision discriminator network that predicts collisions by leveraging the difference between estimated and actual torques. The collision discriminator finally creates a binary tensor that predicts collisions frame by frame. In simulations, the proposed network exhibited enhanced collision detection performance relative to the other kinds of networks both in terms of prediction speed and accuracy. This underscores the benefits of using Transformer networks for collision detection tasks, where rapid decision-making is essential.

동적 환경하에서의 충돌 예측 및 감지 (Collision prediction and detection in a dynamic environment)

  • 한인환;양우석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.309-314
    • /
    • 1992
  • Many dynamic mechanical systems, such as parts-feeders, walking machines, and percussive power tools, are described by equations of motion which are discontinuous. The discontinuities result from kinematic constraint changes which are difficult to foresee, especially in presence of impact. A simulation algorithm for these types of systems must be able to algorithmically predict and detect the kinematic constraint changes without any prior knowledge of the system's motion. This paper presents a rule-based approach to the prediction and detection of kinematic constraint changes between bodies with arc and line boundaries. The developed algorithm's ability to accurately and automatically detect the unpredicted changes of kinematic constraints is demonstrated with a numerical example.

  • PDF

무인항공기의 자동 착륙을 위한 LSM 및 CPA를 활용한 영상 기반 장애물 상태 추정 및 충돌 예측 (Vision-based Obstacle State Estimation and Collision Prediction using LSM and CPA for UAV Autonomous Landing)

  • 이성봉;박천만;김혜지;이동진
    • 한국항행학회논문지
    • /
    • 제25권6호
    • /
    • pp.485-492
    • /
    • 2021
  • 무인항공기의 영상 기반 자동 정밀 착륙 기술은 착륙 지점에 대한 정밀한 위치 추정 기술과 착륙 유도 기술이 요구된다. 또한, 안전한 착륙을 위하여 지상 장애물에 대한 착륙 지점의 안전성을 판단하고, 안전성이 확보된 경우에만 착륙을 유도하도록 설계되어야 한다. 본 논문은 자동 정밀 착륙을 수행하기 위하여 영상 기반의 항법과 착륙 지점의 안전성을 판단하기 위한 알고리즘을 제안한다. 영상 기반 항법을 수행하기 위해 CNN 기법을 활용하여 착륙 패드를 탐지하고, 탐지 정보를 활용하여 통합 항법 해를 도출한다. 또한, 위치 추정 성능을 향상시키기 위한 칼만필터를 설계 및 적용한다. 착륙 지점의 안전성을 판단하기 위하여 동일한 방식으로 장애물 탐지 및 위치 추정을 수행하고, LSM을 활용하여 장애물의 속도를 추정한다. 추정한 장애물의 상태를 활용하여 계산한 CPA를 기반으로 장애물과의 충돌 여부를 판단한다. 최종적으로 본 논문에서 제안된 알고리즘을 비행 실험을 통해 검증한다.

소형 UAV의 장애물 충돌 회피를 위한 YOLO 및 IR 센서 기반 장애물 크기 예측 방법 (The Obstacle Size Prediction Method Based on YOLO and IR Sensor for Avoiding Obstacle Collision of Small UAVs)

  • 이의천;이종원;최의진;이선아
    • 항공우주시스템공학회지
    • /
    • 제17권6호
    • /
    • pp.16-26
    • /
    • 2023
  • UAV의 수요가 증가함에 따라 많은 충돌 회피 방법들이 제안됐다. 이러한 방법들은 LiDAR 및 스테레오 카메라를 주축으로 연구되었으나 무겁거나 공간이 부족하여 소형 UAV에 접목이 어려웠기에, 최근에는 객체 인지 모델 및 거리 측정 센서를 복합적으로 사용한 방법들이 제안되고 있다. 하지만 이러한 객체 인지 복합 방법들은 인지한 장애물의 크기 정보를 도출하지 않아 인지 초기에 적정 회피 거리 도출 및 장애물의 좌표화가 어렵다는 단점이 존재한다. 본 논문에서는 단안 카메라-YOLO와 적외선 센서 기반의 장애물 크기 예측 방법을 제안하고, 실험을 통해 40cm의 거리 내에서 86.39%의 정확도를 보임을 확인했다. 또한, 제안한 방법을 적용하여 소형 UAV에 적용하여 장애물 충돌 회피가 가능한지를 확인하였다.

YOLOv5와 모션벡터를 활용한 트램-보행자 충돌 예측 방법 연구 (A Study of Tram-Pedestrian Collision Prediction Method Using YOLOv5 and Motion Vector)

  • 김영민;안현욱;전희균;김진평;장규진;황현철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권12호
    • /
    • pp.561-568
    • /
    • 2021
  • 최근 자율주행에 관한 기술은 고부가가치 신기술로서 주목받고 있으며 활발히 연구가 진행되고 있는 분야이다. 상용화 가능한 자율주행을 위해서는 실시간으로 정확하게 진입하는 객체를 탐지하고 이동속도를 추정해야 한다. CNN(Convolutional Neural Network) 기반 딥러닝 알고리즘과 밀집광학흐름(Dense Optical Flow)을 사용하는 기존 방식은 실행 속도가 느려 실시간으로 객체를 탐지하고 이동속도를 추정하기에는 한계가 존재한다. 본 논문에서는 트램에 설치된 카메라를 통해 획득된 주행영상에서 딥러닝 알고리즘인 YOLOv5 알고리즘을 활용하여 실시간으로 객체를 탐지를 수행하고, 탐지된 객체영역에서 기존의 밀집광학흐름(Dense Optical Flow) 대신 연산량을 개선한 부분 밀집광학흐름(Local Dense Optical Flow)을 사용하여 객체의 진행 방향과 속력을 빠르게 추정하는 방식을 제안한다. 이를 바탕으로 충돌 시간과 충돌 지점을 예측할 수 있는 모델을 설계하였으며, 이를 통해 트램(Tram)의 주행 중 전방 충돌사고를 방지할 수 있는 시스템에 적용하고자 한다.

우주감시를 위한 L-Band 위상배열레이다 시스템 설계 (Design of L-Band-Phased Array Radar System for Space Situational Awareness)

  • 이종현;최은정;문현욱;박준태;조성기;박장현;조중현
    • 한국전자파학회논문지
    • /
    • 제29권3호
    • /
    • pp.214-224
    • /
    • 2018
  • 지속적인 우주개발은 인공위성의 지구 추락, 우주잔해물과 우주선 간의 충돌 등 우주위험의 발생 가능성을 크게 증가 시킨다. 국내에서는 이러한 우주위험을 감시하기 위한 광학감시체계 구축은 진행하였으나, 독자적인 상시 우주감시 정보 획득 능력을 갖는 우주감시 레이다기술에 대해서는 확보가 필요한 실정이다. 본 논문에서는 재진입하는 우주물체의 추락 위험 및 저궤도 자국 위성의 충돌 위험에 대응하기 위한 우주감시 임무 분석 및 레이다 요구사항 도출을 통해, 우주물체의 탐지 및 추적을 위한 L-band 위상배열레이다 시스템을 제안한다. 우주감시 임무 분석 및 미국, 유럽 등 해외 선진 시스템의 사례 분석을 바탕으로 레이다 고려사항을 정의하고 레이다를 설계하였으며, 지름 10 cm 우주 파편에 대해 최대탐지거리 1,576 km를 가질 뿐, 아니라 탐지 범위 분석을 통해 국내 운용 중인 인공위성에 대해 우주감시 임무 수행이 가능함을 확인하였다.