• Title/Summary/Keyword: collision frequency

Search Result 313, Processing Time 0.032 seconds

Collided Tag Signals' Periodic Characteristic based RFID Tag Collision Detection Method

  • Yang, Wan-Seung;Park, Hyung-Chul
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.32-36
    • /
    • 2021
  • This paper presents a novel collided tag signals's periodic characteristic based radio frequency identification (RFID) tag collision detection method for the ultra high frequency (UHF) RFID. The proposed method utilizes that periodicity of tag signals is maintained even under tag collision. In the proposed method, the correlation between received signal and reference edge signal is used. Simulation result shows that the detection performance using the proposed method is about 10 dB better than that of existing method. In addition, the detection performances with different magnitude difference, phase difference, delay, number of tags are analyzed.

Performance Evaluation of Anti-collision Algorithms in the Low-cost RFID System (저비용 RFID 시스템에서의 충돌방지 알고리즘에 대한 성능평가)

  • Quan Cheng-hao;Hong Won-kee;Lee Yong-doo;Kim Hie-cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1B
    • /
    • pp.17-26
    • /
    • 2005
  • RFID(Radio Frequency IDentification) is a technology that automatically identifies objects attached with electronic tags by using radio wave. For the implementation of an RFID system, an anti-collision algorithm is required to identify several tags within the RFID reader's range. Few researches report the performance trade-off among anti-collision algorithms in terms of the communications traffic between the reader and tags, the identification speed, and so on. In this paper, we analyze both tree based memoryless algorithms and slot aloha based algorithms that comprise of almost every class of existing anti-collision algorithms. To compare the performance, we evaluated each class of anti-collision algorithms with respect to low-cost RFID system with 96-bit EPC(Electronic Product Code). The results show that the collision tracking tree algorithm outperforms current tree based and aloha based algorithms by at least 2 times to 50 times.

An Analysis of Packet Collision Probability due to Inter-piconet Interference in the Bluetooth Low Energy Networks (저전력 블루투스 네트워크에서 피코넷 간 간섭으로 인한 패킷충돌 확률 분석)

  • Kim, Myoung Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.8
    • /
    • pp.3-11
    • /
    • 2017
  • Research and development are being conducted to apply low-power Bluetooth (BLE) technology to IoT (Internet of Things) applications. The characteristic of this application environment is that many piconets can operate in the same space. Therefore, interference between homogeneous networks is likely to occur. In the BLE data channel, adaptive frequency hopping (AFH) scheme is used among the 37 frequency channels, and the master and the slave communicate while changing the carrier frequency. If there are multiple BLE piconets in the same space, there is a risk of frequency collision and packet errors will occur. In this paper, we analyze the packet collision probability due to cochannel interference in multiple asynchronous BLE piconet environments. Specifically, we analyzed packet collision probability according to the number of concurrently operating BLE piconets with the ratio of connection interval to connection event length as the main parameters. The analysis result can be used to set connection event related parameters for a desired packet collision probability according to the number of users having BLE devices in a given space.

Observation of Electrocatalytic Amplification of Iridium Oxide (IrOx) Single Nanoparticle Collision on Copper Ultramicroelectrodes

  • Choi, Yong Soo;Jung, Seung Yeon;Joo, Jin Woo;Kwon, Seong Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2519-2522
    • /
    • 2014
  • Recently, the observation of the electrocatalytic behavior of individual nanoparticles (NPs) by electrochemical amplification method has been reported. For example, the Iridium oxide ($IrO_x$) NP collision on the Pt UME was observed via electrocatalytic water oxidation. However, the bare Pt UME had poor reproducibility for the observation of NP collision signal and required an inconvenient surface pre-treatment for the usage. In this manuscript, we has been investigated other metal electrode such as Cu UME for the reproducible data analysis and convenient use. The $IrO_x$ NP collision was successively observed on the bare Cu UME and the reproducibility in collision frequency was improved comparing with previous case using the $NaBH_4$ pre-treated Pt UME. Also, the adhesion coefficient between NP and the Cu UME was studied for better understanding of the single NP collision system.

Enhanced Pulse Protocol RFID Reader Anti-collision Algorithm using Slot Occupied Probability in Dense Reader Environment

  • Song, In-Chan;Fan, Xiao;Chang, Kyung-Hi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.6
    • /
    • pp.299-311
    • /
    • 2008
  • The Radio Frequency IDentification (RFID) system is a contactless automatic identification system, which comprises readers and tags. In RFID systems, a reader collision occurs when there is interference in communication between one reader and the tags, due to the signals from other readers. The reader collision problem is considered as the fundamental problem affecting high density RFID reader installations. In this paper, we analyze the existing reader anti-collision algorithms. We also propose a pulse protocol-based reader anti-collision algorithm using slot occupied probability (SOP). The implementation of this improvement is simple, yet it effectively mitigates most reader collisions in dense reader mode, as shown in our simulation. That is, the proposed algorithm reduces the identification time, and increasesthe system throughput and system efficiency compared with the conventional reader anti-collision algorithms.

The Risk Analysis and Stability Estimation of Ship Collision Protection of Myodo-Gangyang Suspension Bridge (묘도-광양간 현수교의 선박충돌 방지공의 위험도 분석 및 안정성 평가)

  • Chang, Yong-Chai;Park, Ki-Chul;Kim, Kyung-Taek
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.2
    • /
    • pp.127-133
    • /
    • 2009
  • The suspension bridge between Myodo and Gwangyang is located in the main navigation channel to Gwangyang Harbor. So, there is need for the collision protection against large vessels. In this paper, the method of risk analysis and non-linear numerical analysis are conducted to consider the ship collision effects. The results of risk analysis, the annual frequency of collapse is more than the acceptable frequency 0.0001. Therefore, as a ship collision protection, island protection with concrete block quay wall is planned. The ship collision force on the pylon is less than the lateral capacity of pylon from the nonlinear numerical analysis.

  • PDF

Packet Interference of Bluetooth Piconet Using an Adaptive Frequency Hopping and Advanced Adaptive Frequency Hopping Algorithm for Frequency Collision Avoidance in WPANs (WPAN 환경에서 AFH 알고리즘을 사용하는 블루투스 피코넷의 패킷 간섭과 주파수 충돌 회피를 위한 적응적 Frequency Hopping Algorithm)

  • Kim, Seung-Yeon;Lee, Hyong-Yoo;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9B
    • /
    • pp.604-611
    • /
    • 2007
  • In this paper, we present an analysis of the throughput when there are multiple piconets and WLAN sharing the ISM bands. The analysis takes channel propagation characteristics and the capture effect. We also propose an algorithm which can be used to reduce the amount of channel scanning. By using traffic prediction of the interfering WLAN, we are able to maintain a reasonable performance in terms of fraction of time channel is wasted due to collisions or unused channel. Through computer simulation, we demonstrate that the proposed algorithm achieves reduced scanning frequency.

A Study on the Tree based Memoryless Anti-Collision Algorithm for RFID Systems (RFID 시스템에서의 트리 기반 메모리래스 충돌방지 알고리즘에 관한 연구)

  • Quan Chenghao;Hong Wonkee;Lee Yongdoo;Kim Hiecheol
    • The KIPS Transactions:PartC
    • /
    • v.11C no.6 s.95
    • /
    • pp.851-862
    • /
    • 2004
  • RFID(Radio frequency IDentification) is a technology that automatically identifies objects containing the electronic tags by using radio wave. The multi-tag identification problem is the core issue in the RFID and could be resolved by the anti-collision algorithm. However, most of the existing anti-collision algorithms have a problem of heavy implementation cost and low performance. In this paper. we propose a new tree based memoryless anti-collision algorithm called a collision tracking tree algorithm and presents its performance evaluation results obtained by simulation. The Collision Tracking Tree algorithm proves itself the capability of an identification rate of 749 tags per second and the performance evaluation results also show that the proposed algorithm outperforms the other two existing tree-based memoryless algorithms, i.e., the tree-walking algorithm and the query tree algorithm about 49 and 2.4 times respectively.

Multiple Access Scheme by Dynamically Applying the Power Increasing Method in the UHF RFID System (UHF대역 RFID system에서 전력상승기법을 동적으로 적용한 다중접속방법)

  • Yim, You-Seok;Hwang, Jae-Ho;Sohn, Sung-Hwan;Kim, Jae-Moung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.5
    • /
    • pp.12-20
    • /
    • 2008
  • RFID(Radio frequency indentification) technology, that the reader detect the tag information attached on the objects without contact, is considered the kernel of realizing tile Ubiquitous Sensor Network. Particularly, because there are lots of tags(which the reader have to detect) in the UHF RFID system(that is applied at the Logistic & Distribution industry). In the UHF RFID system the negative effects, we called the tag-collision, may occur and we should solve these effects. So, in the EPCglobal Gen2 protocol they present the Slotted Random Anti-collision algorithm to prevent the tag-collision effect. In this paper, in order to minimize the tag-collision effect and bring on the system efficiency, we propose the Power Increasing Method that controls the transmission power of the reader depending on the environment and verily the improved performance.

Molecular Simulation Studies for Penetrable-Sphere Model: II. Collision Properties (침투성 구형 모델에 관한 분자 전산 연구: II. 충돌 특성)

  • Kim, Chun-Ho;Suh, Soong-Hyuck
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.513-519
    • /
    • 2011
  • Molecular simulations via the molecular dynamics method have been carried out to investigate the dynamic collision properties of penetrable-sphere model fluids. The collision frequencies, the mean free paths, the angle distributions of the hard-type reflection and the soft-type penetration, and the effective packing fractions are computed over a wide range of the packing fraction ${\phi}$ and the repulsive energy ${\varepsilon}^*$. The soft-type collisions are dominated for lower repulsive energy systems, while the hardtype collisions for higher repulsive energy systems. Very interestingly, the ratio of the soft-type (or, the hard-type) collision frequency to the total collision frequency is directly related with the Boltzmann factor of acceptance (or rejection) probabilities in the canonical ensemble Monte Carlo calculations. Such dynamic collision properties are shown to be restricted for highly repulsive and dense systems of ${\varepsilon}^*{\geqq}3.0 $and ${\phi}{\geqq}0.7$, indicating the cluster forming structures in the penetrable-sphere model.