• Title/Summary/Keyword: collision deformation

Search Result 131, Processing Time 0.025 seconds

Ship Collision Behaviors of Offshore Wind Tower on Bucket Foundation (버켓기초를 가진 해상풍력타워의 선박충돌 거동)

  • Lee, Gye-Hee;Park, Jun-Seok;Hong, Kwan-Young
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.2
    • /
    • pp.138-147
    • /
    • 2012
  • In this paper, the various parametric study of collisions between a offshore wind tower and vessels were performed to estimate the ultimate behaviors of the bucket foundation and the tower. Additionally, the stability of the foundation and the energy dissipation capacities of the tower were analyzed. The results shows that the collision energy of the vessel was mainly dissipated by the plastic deformation energy of the tower and the foundation system shown enough bearing capacity against to this severe loading condition.

Comparative study on deformation and mechanical behavior of corroded pipe: Part I-Numerical simulation and experimental investigation under impact load

  • Ryu, Dong-Man;Wang, Lei;Kim, Seul-Kee;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.509-524
    • /
    • 2017
  • Experiments and a numerical simulation were conducted to investigate the deformation and impact behavior of a corroded pipe, as corrosion, fatigue, and collision phenomena frequently occur in subsea pipelines. This study focuses on the deformation of the corrosion region and the variation of the geometry of the pipe under impact loading. The experiments for the impact behavior of the corroded pipe were performed using an impact test apparatus to validate the results of the simulation. In addition, during the simulation, material tests were performed, and the results were applied to the simulation. The ABAQUS explicit finite element analysis program was used to perform numerical simulations for the parametric study, as well as experiment scenarios, to investigate the effects of defects under impact loading. In addition, the modified ASME B31.8 code formula was proposed to define the damage range for the dented pipe.

The Effect of the Deformation on the Sensitivity of a Flexible PDMS Membrane Sensor to Measure the Impact Force of a Water Droplet (액적의 충격력 측정을 위한 유연 멤브레인 센서의 PDMS 변형에 의한 민감도의 영향)

  • Kang, Dong Kwan;Lee, Sangmin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.16-21
    • /
    • 2022
  • This study investigates the effect of the deformation on the sensitivity of a flexible polydimethylsiloxane (PDMS) membrane sensor. A PDMS membrane sensor was developed to measure the impact force of a water droplet using a silver nanowire (AgNW). The initial deformation of the membrane was confirmed with the application of a tensile force (i.e., tension) and fixing force (i.e., compressive force) at the gripers, which affects the sensitivity. The experimental results show that as the tension applied to the membrane increased, the sensitivity of the sensor decreased. The initial electrical resistance increased as the fixing force increased, while the sensitivity of the sensor decreased as the initial resistance increased. The movement of the membrane due to the impact force of the water droplet was observed with a high-speed camera, and was correlated with the measured sensor signal. The analysis of the motion of the membrane and droplets after collision confirmed the periodic movement of not only the membrane but also the change in the height of the droplet.

Shape Design of Crash Box with Absorption Performance against Impact (충돌에 대한 흡수 성능을 가진 크래쉬 박스의 형상설계)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.169-173
    • /
    • 2011
  • Crash box is introduced to vehicle design to improve the impact performance and reduce the damage of vehicle body at impact speed. The crash box behind bumper can absorb impact energy effectively to improve vehicle safety. Repair cost at collision accident can be cut down by use of this box. The configuration of car body must be designed by considering the characteristic of material due to the deformation of car body happened at impact. Many papers have been published about material of crash box all over the world. The study of crash box with tube expansion type has been going on Korea. This study is done by the simulation analysis about front collisions against 5 kinds of aluminum crash boxes with the basic structure of square section.

Crush Analysis of a TTX M-Car Design (TTX 구동차 설계안의 충돌압괴특성 분석)

  • Jung Hyun-Seung;Kwon Tae-Soo;Koo Jeong-Seo;Cho Tae-Min
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.616-621
    • /
    • 2004
  • In this paper, the crush characteristics of a tilting train express (TTX) M-car design are evaluated with a head-on collision scenario. Its body shell is divided into three parts - front end, middle section, and rear end. For each part, crush-force relation is evaluated numerically through 3-dimensional shell element analysis with LS-DYNA. TTX's embody structure is a hybrid type structure made of steel and composite materials. Composite sandwich panels are modeled as layered shells whose layers have different material properties. And a damage material model is used to consider the effect of stiffness degradation during deformation. The crush characteristics obtained from these calculations will be used as material modeling data of full-rake collision analyses.

  • PDF

A study on nonlinear crash analysis of railway tankcar according to the overseas crashworthiness regulations (해외 충돌안전규정에 따른 유류탱크화차의 비선형충돌해석 연구)

  • Son, Seung Wan;Jung, Hyun Seung;Ahn, Seung Ho;Kim, Jin Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.843-850
    • /
    • 2020
  • The purpose of this study is to evaluate the structural risk and weakness of a railway tank car through nonlinear collision analysis according to overseas collision safety standards. The goal is to propose a crash safety design guideline for railway tank cars for transporting dangerous goods in Korea. We analyzed the buffer impact test procedure of railway freight cars prescribed in EN 12663-2 and the tank puncture test criteria prescribed in 49CFR179. A nonlinear finite element model according to each standard was modeled using LS-DYNA, a commercial finite element analysis solver. As a result of the buffing impact test simulation, it was predicted that plastic deformation would not occur at a collision speed of 6 km/h or less. However, plastic deformation was detected at the rear of the center sill and at the tank center supporting the structure at a collision speed of 8 km/h or more. As a result of a head-on test simulation of tank puncture, the outer tank shell was destroyed at the corner of the tank head when 4% of the kinetic energy of the impacter was absorbed. The tank shell was destroyed in the area of contact with the impacter in the test mode analysis of tank shell puncture when the kinetic energy of the moving vehicle was reduced by 30%. Therefore, the simulation results of the puncture test show that fracture at the tank shell and leakage of the internal material is expected. Consequently, protection and structural design reinforcement are required on railway tank cars in Korea.

Dynamic Analysis for a Flexible Track Modeling of Turnout (분기기 궤도 유연체 모델링 및 동역학 해석)

  • Kim, Man-Cheol;Hwang, Sung-Ho;Hwang, Kwang-Ha;Hyun, Sang-Hak
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2830-2837
    • /
    • 2011
  • In this paper, a flexible track modeling of turnout was developed and dynamic characteristics of turnout rails were analyzed when a vehicle passed through the turnout. The flexible track modeling is effective to the stiffness and durability design of turnout, because it can capture the deformation and dynamic stress due to the collision of between wheels and rails when the vehicle move to the tongue rail. Also, a more accurate running safety can be obtained by considering the interaction between wheel and rail deformation. Solid finite elements were used for variable cross-sections of rails and the variation of rubber stiffness was modeled. The proposed flexible track modeling in this paper was verified to be valid by comparison with the experiment of the turnout system.

  • PDF

Collapse Characteristics of CFRP Hat Shaped members According to Variation of Interface Numbers under the Hygrothermal Environment (고온.고습 환경 하에서의 계면수 변화에 따른 CFRP모자형 단면 부재의 압궤특성)

  • Yang, Yong-Jun;Cha, Cheon-Seok;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.241-247
    • /
    • 2009
  • It is important to satisfy the requirements and standards for the protections of passengers in a car accident. There are lots of studies on the crushing energy absorption of a structure members in automobiles. We have studied to investigate collapse characteristics and moisture absorption movements of CFRP(Carbon Fiber Reinforced Plastics) hat shaped sectional members when CFRP laminates are under the hygrothermal environment. In particular, the absorbed energy, mean collapse load and deformation mode were analyzed for side members which absorbed most of the collision energy. Variation of CFRP interlaminar numbers is important to increase the energy absorption capability. Therefore we have made a static collapse experiment to research into the difference of absorbed energy and deformation mode between moisture absorbed specimen and non-moisture absorbed.

  • PDF

Crashworthiness analysis on existing RC parapets rehabilitated with UHPCC

  • Qiu, Jinkai;Wu, Xiang-guo;Hu, Qiong
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.87-98
    • /
    • 2017
  • In recent year, the coat layer drops and the rebar rust of bridge parapets, which caused the structural performance degradation. In order to achieve the comprehensive rehabilitation, ultra high performance cementitious composites is proposed to existing RC parapet rehabilitation. The influence factors of UHPCC rehabilitation includes two parts, i.e., internal factors related with material, such as UHPCC layer thickness, corrosion ratio of rebars, fiber volume fraction, and external factors related with the load, such as impact speeds, impact angles, vehicle mass. The influence of the factors was analyzed in this paper based on the nonlinear finite element. The analysis results of the maximum dynamic deformation and the peak impact load of parapets revealed the influence of the internal factors and the external factors on anti-collision performance and degree degradation. This research may provide a reference for the comprehensive multifunctional rehabilitation of existing bridge parapets.

Collapse Characteristics of CFRP Hat Shaped Members under the Hygrothermal Environment According to Stacking Angle (열습환경 하에서의 적층각도 변화에 따른 CFRP 모자형 단면부재의 압궤특성)

  • Yang, Yong-Jun;Yang, In-Young;Sim, Jae-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.507-513
    • /
    • 2009
  • It is important to satisfy the requirements and standards for the protections of passengers in a car accident. There are lots of studies on the crushing energy absorption of structure members in automobiles. We have investigated collapse characteristics and moisture absorption movements of CFRP(Carbon Fiber Reinforced Plastics) hat shaped sectional members when CFRP laminates are under the hygrothermal environment. The absorbed energy, mean collapse load and deformation mode were analyzed for side members which absorbed most of the collision energy. Therefore we have made a static collapse experiment to research into the difference of absorbed energy and deformation mode between moisture absorbed specimen and non-moisture absorbed specimen.

  • PDF