• Title/Summary/Keyword: collision avoidance system

Search Result 390, Processing Time 0.296 seconds

Analysis of a Distributed Stochastic Search Algorithm for Ship Collision Avoidance (선박 충돌 방지를 위한 분산 확률 탐색 알고리즘의 분석)

  • Kim, Donggyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.169-177
    • /
    • 2019
  • It is very important to understand the intention of a target ship to prevent collisions in multiple-ship situations. However, considering the intentions of a large number of ships at the same time is a great burden for the officer who must establish a collision avoidance plan. With a distributed algorithm, a ship can exchange information with a large number of target ships and search for a safe course. In this paper, I have applied a Distributed Stochastic Search Algorithm (DSSA), a distributed algorithm, for ship collision avoidance. A ship chooses the course that offers the greatest cost reduction or keeps its current course according to probability and constraints. DSSA is divided into five types according to the probability and constraints mentioned. In this paper, the five types of DSSA are applied for ship collision avoidance, and the effects on ship collision avoidance are analyzed. In addition, I have investigated which DSSA type is most suitable for collision avoidance. The experimental results show that the DSSA-A and B schemes offered effective ship collision avoidance. This algorithm is expected to be applicable for ship collision avoidance in a distributed system.

New idea about realizing automatic collision avoidance on the sea

  • Yao, Jie;Wu, Zhaolin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2001.10a
    • /
    • pp.65-74
    • /
    • 2001
  • The rapid development of computer technology and widely application of artificial intelligent provide technology support for realizing navigation automation on the sea. which has achieved great success in shipping advanced countries like japan, England, America, Germany and also in the developing country, China. However, it still remains in the studying Period up to now in aspects of collision avoidance decision-making mathematical model and reasoning mechanism. In this paper, approaches are proposed to establish the collision avoidance automation system. One of them is based on the former studies to realize automation system by make use of finite state machine theory and following the International regulations for Preventing Collision at Sea, 1972. The others are to establish the new idea about automatic collision avoidance system by taking advantage of the free flight idea, hybrid system, game theory used in air traffic management studies in recent years and the common characteristics in both air and sea traffic management.

  • PDF

Development of Autonomous Navigation System Using Simulation Based on Unity-ROS (Unity-ROS 시뮬레이터 기반의 자율운항 시스템 개발 및 검증)

  • Kiwon Kim;Hyuntae Bang;Jeonghwa Seo;Wonkeun Youn
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.406-415
    • /
    • 2023
  • In this study, we focused on developing and verifying ship collision avoidance algorithms using Unity simulator and ROS(Robot Operating System). ROS is used to establish an environment where communication between different operating systems is possible, and a dynamic model of a ship is constructed within Unity simulator. The Lidar data collected in Unity environment is passed to the system based on python through ROS. In the system based on python, control command values were created through the logic of the collision avoidance algorithm using data, and the values were transferred back to Unity to control the movement of the virtual ship. Through the developed simulation system, the reliability of the collision avoidance algorithm of ships with two different forms in an environment similar to the actual physical world was confirmed. As a result, it was confirmed on the simulator that it could be avoided without collision even in an environment with various types of obstacles, and that the avoidance characteristics according to the dynamics of the ship could be analyzed.

Intruder Tracking and Collision Avoidance Algorithm Design for Unmanned Aerial Vehicles using a Model-based Design Method (모델 기반 설계 기법을 이용한 무인항공기의 침입기 추적 및 충돌회피 알고리즘 설계)

  • Choi, Hyunjin;Yoo, Chang-Sun;Ryu, Hyeok;Kim, Sungwook;Ahn, Seokmin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.83-90
    • /
    • 2017
  • Unmanned Aerial Vehicles(UAVs) require collision avoidance capabilities equivalent to the capabilities of manned aircraft to enter the airspace of manned aircraft. In the case of Visual Flight Rules of manned aircraft, collision avoidance is performed by 'See-and-Avoid' of pilots. To obtain those capabilities of UAVs named as 'Sense-and-Avoid', sensor-system-based intruder tracking and collision avoidance methods are required. In this study, a multi-sensor-based tracking, data fusion, and collision avoidance algorithm is designed by using a model-based design tool MATLAB/SIMULINK, and validations of the designed model and code using numerical simulations and processor-in-the-loop simulations are performed.

A Study on Performance Comparison of COTS Operating Systems for a Mission Computer Using UAV Collision Avoidance Algorithm (무인기 충돌회피 알고리즘을 이용한 임무컴퓨터용 상용기성품 운영체계 성능 비교에 대한 연구)

  • Yang, Jun-Mo;Jeon, Yu-Ji;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.6-11
    • /
    • 2016
  • There has been an increase in the number of researches on the segment for commercialization after developing avionics systems. In this paper, we have applied a commercial off-the-shelf(COTS) operating systems in an aircraft mission computer. We used UAV collision avoidance algorithms to compare the performance of COTS operating systems. The UAV collision avoidance algorithms were tested on different operating systems to compare the performances of the operating systems. The measured parameters are memory usage and processing time. We have verified that the UAV collision avoidance algorithms worked successfully and compared the performance of each operating system.

A DESIGN OF INTERSECTION COLLISION AVOIDANCE SYSTEM BASED ON UBIQUITOUS SENSOR NETWORKS

  • Kim, Min-Soo;Lee, Eun-Kyu;Jang, Byung-Tae
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.749-752
    • /
    • 2005
  • In this paper, we introduce an Intersection Collision Avoidance (ICA) system as a convergence example of Telematics and USN technology and show several requirements for the ICA system. Also, we propose a system design that satisfies the requirements of reliable vehicular data acquisition, real-time data transmission, and effective intersection collision prediction. The ICA system consists of vehicles, sensor nodes and a base station that can provide drivers with a reliable ICA service. Then, we propose several technological solutions needed when implementing the ICA system. Those are about sensor nodes deployment, vehicular information transmission, vehicular location data acquisition, and intersection collision prediction methods. We expect this system will be a good case study applied to real Telematics application based on USN technology.

  • PDF

Remote Control of an unmaned vehicle of shortage of hands using Internet (인터넷을 이용한 지능형 무인 차량의 원격제어)

  • 김승철;김남수;임영도
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.57-61
    • /
    • 2002
  • We design Collision Avoidance System using model vehicle. The purpose of this system(Collision Avoidance System) is to maintain continuously constant distance between a forward running vehicle and a following automatic guided vehicle(AGV). For this system, we design modeling of vehicle and observe this through simulation. By sing super sonic sensors to measure the distance between vehicles and controller using 80c196kc for changing velocity of motor, we design Collision Avoidance System as maintaining continuously constant distance between vehicles.

  • PDF

AN ASYMPTOTIC STABILITY INVOLVING COLLISION AND AVOIDANCE

  • Ha, Jun-Hong;Shim, Jae-Dong
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.829-840
    • /
    • 2001
  • Generally it is not easy task whether the stable systems governed by nonlinear ordinary differential equations are asymptotically stable or not. This problem often appears in studying a collision and avoidance control problem based on the stability theory. In this paper we devoted to finding conditions that the stable system obtained from the collision and avoidance control problem is asymptotically stable.

A Study on the Early Detection System on Altering Course of a Target Ship(2) (선박충돌 회피능력 향상을 위한 선회조기 감지시스템 연구개발(2))

  • Choi, Woon-Kyu;Jung, Chang-Hyun
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.38
    • /
    • pp.69-77
    • /
    • 2015
  • If we don't know the intention of altering course of a target ship when being in a head-on or a crossing situation, we may be confused about our decision making to change our course for collision avoidance and be in a danger of collision. In order to solve these problems, we need to develop an automatic detection system on altering course of a target ship for efficient collision avoidance. In this paper, we proposed an early detection system on altering course of a target ship using the steering wheel signal. This system will contribute to the reduction of collision accidents and also be used to the VTS system and the analysis of marine accidents.

  • PDF

A Study on the Early Detection System on Altering Course of a Target Ship (선박충돌 회피능력 향상을 위한 선회조기 감지시스템 연구개발(1))

  • Choi, Woon-Kyu;Jung, Chang-Hyun
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.36
    • /
    • pp.71-78
    • /
    • 2014
  • If we don't know the intention of altering course of a target ship when being in a head-on or a crossing situation, we may be confused about our decision making to change our course for collision avoidance and be in a danger of collision. In order to solve these problems, we need to develop an automatic detection system on altering course of a target ship for efficient collision avoidance. In this paper, we proposed an early detection system on altering course of a target ship using the steering wheel signal. This system will contribute to the reduction of collision accidents and also be used to the VTS system and the analysis of marine accidents.

  • PDF