• Title/Summary/Keyword: collision algorithm

Search Result 927, Processing Time 0.031 seconds

Real-time Path Replanning for Unmanned Aerial Vehicles: Considering Environmental Changes using RRT* and LOSPO (무인 항공기를 위한 실시간 경로 재계획 기법: RRT*와 LOSPO를 활용한 환경 변화 고려)

  • Jung Woo An;Ji Won Woo;Hyeon Seop Kim;Sang Yun Park;Gyeon Rae Nam
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.365-373
    • /
    • 2023
  • Unmanned aerial vehicles are widely used in various fields, and real-time path replanning is a critical factor in enhancing the safety and efficiency of these devices. In this paper, we propose a real-time path replanning technique based on RRT* and LOSPO. The proposed technique first generates an initial path using the RRT* algorithm and then optimizes the path using LOSPO. Additionally, the optimized path can be converted into a trajectory that considers actual time and the dynamic limits of the aircraft. In this process, environmental changes and collision risks are detected in real-time, and the path is replanned as needed to maintain safe operation. This method has been verified through simulation-based experiments. The results of this paper make a significant contribution to the research on real-time path replanning for UAVs, and by applying this technique to various situations, the safety and efficiency of UAVs can be improved.

Path Tracking System for Small Ships based on IMU Sensor and GPS (소형선박을 위한 IMU 센서와 GPS 기반의 경로 추적 시스템)

  • Jo, Yeonsu;Lee, Sukhoon;Jeong, Dongwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.18-20
    • /
    • 2021
  • In order to prevent collision accidents of ships, which has been increasing recently, research on artificial intelligence-based autonomously operated ships (Maritime Autonomous Surface Ship, MASS) is underway. However, most of the studies related to autonomous ships mainly target medium-to-large ships due to the size and cost of the autonomous navigation system, and the sensors used here have a problem in that it is difficult to mount them on small ships. Therefore, this paper provides a path tracking system equipped with GPS and IMU sensors for autonomous operation of small ships. GPS and IMU sensors are utilized to determine the exact position of the vessel, which allows the proposed system to manually control the small vessel model to create a path and then when the small vessel travels the same path. Use the Pure Pursuit algorithm to follow the path. As a result, In this research, it is expected that a lightweight and low-cost sensor can be used to develop an autonomous operation system for small ships at low cost.

  • PDF

A Formation Control of Swarm Unmanned Surface Vehicles Using Potential Field Considering Relative Velocity (상대속도를 고려한 포텐셜 필드 기반 군집 무인수상선의 대형 제어)

  • Seungdae Baek;Minseung Kim;Joohyun Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.3
    • /
    • pp.170-184
    • /
    • 2024
  • With the advancement of autonomous navigation technology in maritime domain, there is an active research on swarming Unmanned Surface Vehicles (USVs) that can fulfill missions with low cost and high efficiency. In this study, we propose a formation control algorithm that maintains a certain shape when multiple unmanned surface vehicles operate in a swarm. In the case of swarming, individual USVs need to be able to accurately follow the target state and avoid collisions with obstacles or other vessels in the swarm. In order to generate guidance commands for swarm formation control, the potential field method has been a major focus of swarm control research, but the method using the potential field only uses the position information of obstacles or other ships, so it cannot effectively respond to moving targets and obstacles. In situations such as the formation change of a swarm of ships, the formation control is performed in a dense environment, so the position and velocity information of the target and nearby obstacles must be considered to effectively change the formation. In order to overcome these limitations, this paper applies a method that considers relative velocity to the potential field-based guidance law to improve target following and collision avoidance performance. Considering the relative velocity of the moving target, the potential field for nearby obstacles is newly defined by utilizing the concept of Velocity Obstacle (VO), and the effectiveness and efficiency of the proposed method is verified through swarm control simulation, and swarm control experiments using a small scaled unmanned surface vehicle platform.

Parameter Analysis to Predict Cervical Spine Injury on Motor Vehicle Accidents (탑승자 교통사고에서 경추손상 판단을 위한 중증도 요인 분석)

  • Lee, Hee Young;Youk, Hyun;Kong, Joon Seok;Kang, Chan Young;Sung, Sil;Lee, Jung Hun;Kim, Ho Jung;Kim, Sang Chul;Choo, Yeon Il;Jeon, Hyeok Jin;Park, Jong Chan;Choi, Ji Hun;Lee, Kang Hyun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.3
    • /
    • pp.20-26
    • /
    • 2018
  • It was a pilot study for developing an algorithm to determine the presence or absence of cervical spine injury by analyzing the severity factor of the patients in motor vehicle occupant accidents. From August 2012 to October 2016, we used the KIDAS database, called as Korean In-Depth Accident Study database, collected from three regional emergency centers. We analyzed the general characteristics with several factors. Moreover, cervical spine injury patients were divided into two groups: Group 1 for from Quebec Task Force (hereinafter 'QTF') grade 0 to 1, and group 2 for from QTF grade 2 to 4. The score was assigned according to the distribution ratio of cervical spine injured patients compared to the total injured patients, and the cut-off value was derived from the total score by summation of the assigned score of each factors. 987 patients (53.0%) had no cervical spine injuries and 874 patients (47.0%) had cervical spine injuries. QTF grade 2 was found in 171 patients (9.2%) with musculoskeletal pain, QTF grade 3 was found in 38 patients (2.0%) with spinal cord injuries, and QTF grade 4 was found in 119 patients (6.4%) with dislocation or fracture, respectively. We selected the statistically significant factors, which could be affected the cervical spine injury, like the collision direction, the seating position, the deformation extent, the vehicle type and the frontal airbag deployment. Total score, summation of the assigned each factors, 10 was presented as a cut-off value to determine the cervical spine injury. In this study, it was meaningful as a pilot study to develop algorithms by selecting limited influence factors and proposing cut-off value to determine cervical spine injury. However, since the number of data samples was too small, additional data collection and influencing factor analysis should be performed to develop a more delicate algorithm.

Design of ATM Switch-based on a Priority Control Algorithm (우선순위 알고리즘을 적용한 상호연결 망 구조의 ATM 스위치 설계)

  • Cho Tae-Kyung;Cho Dong-Uook;Park Byoung-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.4
    • /
    • pp.189-196
    • /
    • 2004
  • Most of the recent researches for ATM switches have been based on multistage interconnection network known as regularity and self-routing property. These networks can switch packets simultaneously and in parallel. However, they are blocking networks in the sense that packet is capable of collision with each other Mainly Banyan network have been used for structure. There are several ways to reduce the blocking or to increase the throughput of banyan-type switches: increasing the internal link speeds, placing buffers in each switching node, using multiple path, distributing the load evenly in front of the banyan network and so on. Therefore, this paper proposes the use of recirculating shuffle-exchange network to reduce the blocking and to improve hardware complexity. This structures are recirculating shuffle-exchange network as simplified in hardware complexity and Rank network with tree structure which send only a packet with highest priority to the next network, and recirculate the others to the previous network. after it decides priority number on the Packets transferred to the same destination, The transferred Packets into banyan network use the function of self routing through decomposition and composition algorithm and all they arrive at final destinations. To analyze throughput, waiting time and packet loss ratio according to the size of buffer, the probabilities are modeled by a binomial distribution of packet arrival. If it is 50 percentage of load, the size of buffer is more than 15. It means the acceptable packet loss ratio. Therefore, this paper simplify the hardware complexity as use of recirculating shuffle-exchange network instead of bitonic sorter.

  • PDF

Establishment of Bus Priority Signal in Real-Time Traffic Signal Control (실시간신호제어시스템에서의 버스우선신호 알고리즘 정립 (중앙버스 전용차로를 대상으로))

  • Han, Myeong-Ju;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.101-114
    • /
    • 2006
  • Recently due to the increase of cars and city life, the traffic congestion has worsened. It Is particularly worse in the center of the metropolis. Within the general public means, the public transport buses have the advantage of being more cheap, accessible and mobile. But as there is no separate lane for buses, the collision of cars and buses are creating damage to public service. In order to solve this situation, the bus priority signal system has been introduced to reduce the bus travel time and improve its services. The purpose of this study is to establish bus priority signal algorithm which builds bus efficiency under the real-time traffic signal control system and to analyze the effect of it. As the green time was calculated against real time (under the real-time traffic signal control system), compared to existing bus priority signal there was a reduction in cross street loss. The modified cycle was used to maintain signal progression. A case study was carried out using VISSIM simulation model. In result of this study, we found that there was a decrease in bus travel time despite some evidence of car delays and compared to existing bus priority signal the delay of dishonor could be reduced dramatically. The analysed result of person delay using MOE, is that there is evidence that when bus priority signal is in effect, the person delay is reduced.

A Schematic Map Generation System Using Centroidal Voronoi Tessellation and Icon-Label Replacement Algorithm (중심 보로노이 조각화와 아이콘 및 레이블 배치 알고리즘을 이용한 도식화된 지도 생성 시스템)

  • Ryu Dong-Sung;Uh Yoon;Park Dong-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.2
    • /
    • pp.139-150
    • /
    • 2006
  • A schematic map is a special purpose map which is generated to recognize it's objects easily and conveniently via simplifying and highlighting logical geometric information of a map. To manufacture the schematic map with road, label and icon, we must generate simplified route map and replace many geometric objects. Performing a give task, however, there are an amount of overlap areas between geometric objects whenever we process the replacement of geometry objects. Therefore we need replacing geometric objects without overlap. But this work requires much computational resources, because of the high complexity of the original geometry map. We propose the schematic map generation system whose map consists of icons and label. The proposed system has following steps: 1) eliminating kinks that are least relevant to the shape of polygonal curve using DCE(Discrete Curve Evolution) method. 2) making an evenly distributed route using CVT(Centroidal Voronoi Tessellation) and Grid snapping method. Therefore we can keep the structural information of the route map from CVT method. 3) replacing an icon and label information with collision avoidance algorithm. As a result, we can replace the vertices with a uniform distance and guarantee the available spaces for the replacement of icons and labels. We can also minimize the overlap between icons and labels and obtain more schematized map.

  • PDF

The Dynamic Channel Allocation Algorithm for Collision Avoidance in LR-WPAN (LR-WPAN에서 충돌회피를 위한 동적 채널할당 알고리즘)

  • Lim, Jeong-Seob;Yoon, Wan-Oh;Seo, Jang-Won;Choi, Han-Lim;Choi, Sang-Bang
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.6
    • /
    • pp.10-21
    • /
    • 2010
  • In the cluster-tree network which covers wide area network and has many nodes for monitoring purpose traffic is concentrated around the sink. There are long transmit delay and high data loss due to the intensive traffic when IEEE 802.15.4 is adapted to the cluster-tree network. In this paper we propose Dynamic Channel Allocation algorithm which dynamically allocates channels to increase the channel usage and the transmission success rate. To evaluate the performance of DCA, we assumed the monitoring network that consists of a cluster-tree in which sensing data is transmitted to the sink. Analysis uses the traffic data which is generated around the sink. As a result, DCA is superior when much traffic is generated. During the experiment assuming the least amount of traffic, IEEE 802.15.4, has the minimum length of active period and 90% data transmission success rate. However DCA maintains 11.8ms of active period length and results in 98.9% data transmission success rate.

Outdoor Noise Propagation: Geometry Based Algorithm (옥외 소음의 전파: 음 추적 알고리즘)

  • 박지헌;김정태
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.339-438
    • /
    • 2002
  • This paper presents a method to simulate noise propagation by a computer for outdoor environment. Sound propagated in 3 dimensional space generates reflected waves whenever it hits boundary surfaces. If a receiver is away from a sound source, it receives multiple sound waves which are reflected from various boundary surfaces in space. The algorithm being developed in this paper is based on a ray sound theory. If we get 3 dimensional geometry input as well as sound sources, we can compute sound effects all over the boundary surfaces. In this paper, we present two approaches to compute sound: the first approach, called forward tracing, traces sounds forwards from sound sources. while the second approach, called geometry based computation, computes possible propagation routes between sources and receivers. We compare two approaches and suggest the geometry based sound computation for outdoor simulation. Also this approach is very efficient in the sense we can save computational time compared to the forward sound tracing. Sound due to impulse-response is governed by physical environments. When a sound source waveform and numerically computed impulse in time is convoluted, the result generates a synthetic sound. This technique can be easily generalized to synthesize realistic stereo sounds for virtual reality, while the simulation result is visualized using VRML.

Development of the Risk Evaluation Model for Rear End Collision on the Basis of Microscopic Driving Behaviors (미시적 주행행태를 반영한 후미추돌위험 평가모형 개발)

  • Chung, Sung-Bong;Song, Ki-Han;Park, Chang-Ho;Chon, Kyung-Soo;Kho, Seung-Young
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.133-144
    • /
    • 2004
  • A model and a measure which can evaluate the risk of rear end collision are developed. Most traffic accidents involve multiple causes such as the human factor, the vehicle factor, and the highway element at any given time. Thus, these factors should be considered in analyzing the risk of an accident and in developing safety models. Although most risky situations and accidents on the roads result from the poor response of a driver to various stimuli, many researchers have modeled the risk or accident by analyzing only the stimuli without considering the response of a driver. Hence, the reliabilities of those models turned out to be low. Thus in developing the model behaviors of a driver, such as reaction time and deceleration rate, are considered. In the past, most studies tried to analyze the relationships between a risk and an accident directly but they, due to the difficulty of finding out the directional relationships between these factors, developed a model by considering these factors, developed a model by considering indirect factors such as volume, speed, etc. However, if the relationships between risk and accidents are looked into in detail, it can be seen that they are linked by the behaviors of a driver, and depending on drivers the risk as it is on the road-vehicle system may be ignored or call drivers' attention. Therefore, an accident depends on how a driver handles risk, so that the more related risk to and accident occurrence is not the risk itself but the risk responded by a driver. Thus, in this study, the behaviors of a driver are considered in the model and to reflect these behaviors three concepts related to accidents are introduced. And safe stopping distance and accident occurrence probability were used for better understanding and for more reliable modeling of the risk. The index which can represent the risk is also developed based on measures used in evaluating noise level, and for the risk comparison between various situations, the equivalent risk level, considering the intensity and duration time, is developed by means of the weighted average. Validation is performed with field surveys on the expressway of Seoul, and the test vehicle was made to collect the traffic flow data, such as deceleration rate, speed and spacing. Based on this data, the risk by section, lane and traffic flow conditions are evaluated and compared with the accident data and traffic conditions. The evaluated risk level corresponds closely to the patterns of actual traffic conditions and counts of accident. The model and the method developed in this study can be applied to various fields, such as safety test of traffic flow, establishment of operation & management strategy for reliable traffic flow, and the safety test for the control algorithm in the advanced safety vehicles and many others.