• Title/Summary/Keyword: collision Avoidance

Search Result 832, Processing Time 0.031 seconds

An Experimental Study on the Transient Behavior of Vehicle Rollover (차량 롤전복의 과도거동에 관한 시험적 연구)

  • Lee, Myung-Su;Kim, Sang-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.113-121
    • /
    • 2011
  • Rollover accident is one of the serious traffic accident and rollover accident takes high portion of all accident. The most common type of rollover is a tripped rollover which occupy 95% of all type of single-vehicle rollover. Tripped rollover occurs when a vehicle leaves normal road way and tripped by loose gravel, soil of fixed object such as guard rail, curbs and ditches. And the rest of the type of rollover is un-tripped rollover. An un-tripped rollovers that occurs during high-speed collision avoidance maneuvers. In this paper, presents the explanation of the un-tripped rollover test method and procedure, additionally this paper deals with various occurrence in the un-tripped test such as occurring excessive tire camber in the un-tripped test, tire side-wall contact with road surface and roll oscillation. And this paper analyzes the analysis of the roll rate amplitude in specific frequency through the FFT (Fast Fourier Transform) and the roll angle at the steering reverse timing which is the Fishhook test roll rate feedback time. Finally, this paper analyzes the relations between the estimated steady state roll gain and rollover stability.

A Model for Analyzing the Performance of Wireless Multi-Hop Networks using a Contention-based CSMA/CA Strategy

  • Sheikh, Sajid M.;Wolhuter, Riaan;Engelbrecht, Herman A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2499-2522
    • /
    • 2017
  • Multi-hop networks are a low-setup-cost solution for enlarging an area of network coverage through multi-hop routing. Carrier sense multiple access with collision avoidance (CSMA/CA) is frequently used in multi-hop networks. Multi-hop networks face multiple problems, such as a rise in contention for the medium, and packet loss under heavy-load, saturated conditions, which consumes more bandwidth due to re-transmissions. The number of re-transmissions carried out in a multi-hop network plays a major role in the achievable quality of service (QoS). This paper presents a statistical, analytical model for the end-to-end delay of contention-based medium access control (MAC) strategies. These strategies schedule a packet before performing the back-off contention for both differentiated heterogeneous data and homogeneous data under saturation conditions. The analytical model is an application of Markov chain theory and queuing theory. The M/M/1 model is used to derive access queue waiting times, and an absorbing Markov chain is used to determine the expected number of re-transmissions in a multi-hop scenario. This is then used to calculate the expected end-to-end delay. The prediction by the proposed model is compared to the simulation results, and shows close correlation for the different test cases with different arrival rates.

Design of 24GHz Voltage-Controlled Oscillator for Automotive Collision Avoidance Radar (차량 추돌 예방 레이더용 24GHz 전압제어발진기 설계)

  • Sung, Myeong-U;Choi, Seong-Kyu;Lee, Jae-Hwan;Kim, Sung-Woo;Ryu, Jee-Youl;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.702-703
    • /
    • 2013
  • 본 논문은 차량 추돌 예방 레이더용 24GHz 전압제어발진기를 제안한다. 이러한 회로는 TSMC $0.13{\mu}m$ 혼성신호/고주파 CMOS 공정($f_T/f_{MAX}=120/140GHz$)으로 설계되어 있다. 이러한 회로는 스위치형 공진기 (switched resonator)의 기본 구조를 지닌 24GHz 주파수 대역을 사용할 수 있도록 CMOS LC 튜닝 회로를 포함하고 있다. 특히 전체 칩 면적을 줄이기 위해 수동형 인덕터 대신 능동형 인덕터부를 사용하였다. 본 연구에서 개발한 발진기는 전체 튜닝 범위에 대해 24GHz에서 8%의 측정 결과를 보였으며, 600kHz 오프셋에서 24GHz에 대해 약 -89dBc/Hz의 우수한 위상 잡음 특성을 보였다.

  • PDF

Scheduling of Real-time and Nonreal-time Traffics in IEEE 802.11 Wireless LAN (무선랜에서의 실시간 및 비실시간 트래픽 스케줄링)

  • Lee, Ju-Hee;Lee, Chae Y.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.2
    • /
    • pp.75-89
    • /
    • 2003
  • Media Access Control (MAC) Protocol in IEEE 802.11 Wireless LAN standard supports two types of services, synchronous and asynchronous. Synchronous real-time traffic is served by Point Coordination Function (PCF) that implements polling access method. Asynchronous nonreal-time traffic is provided by Distributed Coordination Function (DCF) based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol. Since real-time traffic is sensitive to delay, and nonreal-time traffic to error and throughput, proper traffic scheduling algorithm needs to be designed. But it is known that the standard IEEE 802.11 scheme is insufficient to serve real-time traffic. In this paper, real-time traffic scheduling and admission control algorithm is proposed. To satisfy the deadline violation probability of the real time traffic the downlink traffic is scheduled before the uplink by Earliest Due Date (EDD) rule. Admission of real-time connection is controlled to satisfy the minimum throughput of nonreal-time traffic which is estimated by exponential smoothing. Simulation is performed to have proper system capacity that satisfies the Quality of Service (QoS) requirement. Tradeoff between real-time and nonreal-time stations is demonstrated. The admission control and the EDD with downlink-first scheduling are illustrated to be effective for the real-time traffic in the wireless LAN.

Utilization of Planned Routes and Dead Reckoning Positions to Improve Situation Awareness at Sea

  • Kim, Joo-Sung;Jeong, Jung Sik;Park, Gyei-Kark
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.288-294
    • /
    • 2014
  • Understanding a ship's present position has been one of the most important tasks during a ship's voyage, in both ancient and modern times. Particularly, a ship's dead reckoning (DR) has been used for predicting traffic situations and collision avoidance actions. However, the current system that uses the traditional method of calculating DR employs the received position and speed data only. Therefore, it is not applicable for predicting navigation within the harbor limits, owing to the frequent changes in the ship's course and speed in this region. In this study, planned routes were applied for improving the reliability of the proposed system and predicting the traffic patterns in advance. The proposed method of determining the dead reckoning position (DRP) uses not only the ships' received data but also the navigational patterns and tracking data in harbor limits. The Mercator sailing formulas were used for calculating the ships' DRPs and planned routes. The data on the traffic patterns were collected from the automatic identification system and analyzed using MATLAB. Two randomly chosen ships were analyzed for simulating their tracks and comparing the DR method during the timeframes of the ships' movement. The proposed method of calculating DR, combined with the information on planned routes and DRPs, is expected to contribute towards improving the decision-making abilities of operators.

Intelligent Internal Stealthy Attack and its Countermeasure for Multicast Routing Protocol in MANET

  • Arthur, Menaka Pushpa;Kannan, Kathiravan
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1108-1119
    • /
    • 2015
  • Multicast communication of mobile ad hoc networks is vulnerable to internal attacks due to its routing structure and high scalability of its participants. Though existing intrusion detection systems (IDSs) act smartly to defend against attack strategies, adversaries also accordingly update their attacking plans intelligently so as to intervene in successful defending schemes. In our work, we present a novel indirect internal stealthy attack on a tree-based multicast routing protocol. Such an indirect stealthy attack intelligently makes neighbor nodes drop their routing-layer unicast control packets instead of processing or forwarding them. The adversary targets the collision avoidance mechanism of the Medium Access Control (MAC) protocol to indirectly affect the routing layer process. Simulation results show the success of this attacking strategy over the existing "stealthy attack in wireless ad hoc networks: detection and countermeasure (SADEC)" detection system. We design a cross-layer automata-based stealthy attack on multicast routing protocols (SAMRP) attacker detection system to identify and isolate the proposed attacker. NS-2 simulation and analytical results show the efficient performance, against an indirect internal stealthy attack, of SAMRP over the existing SADEC and BLM attacker detection systems.

Development of Tele-operation Interface and Stable Navigation Strategy for Humanoid Robot Driving (휴머노이드 로봇의 안전한 차량 주행 전략 및 원격 제어 인터페이스 개발)

  • Shin, Seho;Kim, Minsung;Ahn, Joonwoo;Kim, Sanghyun;Park, Jaeheung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.904-911
    • /
    • 2016
  • This paper presents a novel driving system by the humanoid robot to drive a vehicle in disaster response situations. To enhance robot's capability for substituting human activities in responding to natural and man-made disaster, the one of prerequisite skills for the rescue robot is the mounted mobility to maneuver a vehicle safely in disaster site. Therefore, our driving system for the humanoid is developed in order to steer a vehicle through unknown obstacles even under poor communication conditions such as time-delay and black-out. Especially, the proposed system includes a tele-manipulation interface and stable navigation strategies. First, we propose a new type of path estimation method to overcome limited communication. Second, we establish navigation strategies when the operator cannot recognize obstacles based on Dynamic Window Approach. The effectiveness of the proposed developments is verified through simulation and experiments, which demonstrate suitable system for driving a vehicle in disaster response.

Design and Control of an Omni-directional Cleaning Robot Based on Landmarks (랜드마크 기반의 전방향 청소로봇 설계 및 제어)

  • Kim, Dong Won;Igor, Yugay;Kang, Eun Seok;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.100-106
    • /
    • 2013
  • This paper presents design and control of an 'Omni-directional Cleaning Robot (OdCR)' which employs omni-wheels at three edges of its triangular configuration. Those omni-wheels enable the OdCR to move in any directions so that lateral movement is possible. For OdCR to be localized, a StarGazer sensor is used to provide accurate position and heading angle based on landmarks on the ceiling. In addition to that, ultrasonic sensors are installed to detect obstacles around OdCR's way. Experimental studies are conducted to test the functionality of the system.

Implementation of Vehicle Collision Avoidance Algorithm for Automotive Radar Sensor (차량 레이더 센서용 차량 충돌 방지 알고리즘 구현)

  • Choi, Geun-Ho;Sung, Myeong-U;Kim, Shin-Gon;Rastegar, Habib;Tall, Abu Abdoulaye;Kurbanov, Murod;Choi, Seung-Woo;Pushpalatha, Chandrasekar;Ryu, Jee-Youl;Noh, Seok-Ho;Kil, Keun-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.873-874
    • /
    • 2015
  • 본 논문에서는 24~77GHz 대역의 충돌 방지 레이더 센서를 이용한 차량 충돌 방지 알고리즘을 제안한다. 제안한 알고리즘은 센서로 부터 측정한 전압을 이용하여 전/후/좌/우의 차량의 접근 정보를 획득하고 이를 효율적으로 이용하여 다양한 상황에 따른 차량충돌방지를 할 수 있도록 구현되어 있다. 제안한 차량 충돌방지 알고리즘은 운행 중인 속도를 기반으로 속도구간별 운행정보를 계산하여 충돌방지를 실행한다. 본 연구에서 구현한 차량 충돌 방지 알고리즘은 차량 주행에서 좌우 차량충돌 없이 효율적으로 운행하는 특성을 보였다.

  • PDF

A Study on the System for Controlling Factory Safety based on Unity 3D (Unity 3D 기반 깊이 영상을 활용한 공장 안전 제어 시스템에 대한 연구)

  • Jo, Seonghyeon;Jung, Inho;Ko, Dongbeom;Park, Jeongmin
    • Journal of Korea Game Society
    • /
    • v.20 no.3
    • /
    • pp.85-94
    • /
    • 2020
  • AI-based smart factory technologies are only increase short-term productivity. To solve this problem, collaborative intelligence combines human teamwork, creativity, AI speed, and accuracy to actively compensate for each other's shortcomings. However, current automation equipmens require high safety measures due to the high disaster intensity in the event of an accident. In this paper, we design and implement a factory safety control system that uses a depth camera to implement workers and facilities in the virtual world and to determine the safety of workers through simulation.