• Title/Summary/Keyword: collision Avoidance

Search Result 834, Processing Time 0.028 seconds

Architecture of Collision Avoidance System between Bicycle and Moving Object by Using V2V(X) Network (V2V(X) 네트워크를 이용한 자전거와 이동 객체간 충돌 회피 시스템 구조)

  • Gu, Bon-gen
    • Journal of Platform Technology
    • /
    • v.6 no.3
    • /
    • pp.10-16
    • /
    • 2018
  • Bicycle shares road with various traffic elements like car, pedestrian and, the number of bicycle user is increasing in recent. Therefore, bicycle accident continuously increases. Especially in complex traffic environment, bicycle accident which collides with moving object such as pedestrian occupies many parts of bicycle accident in the reason that the cyclist does not recognize moving object. In this paper, to reduce or avoid the bicycle accident, we propose the architecture of bicycle collision avoidance system in which that cyclist can get the information about moving object by connecting bicycle to network of vehicles and does some action for avoiding collision. In our architecture, when traffic element such as car recognizes moving object, it decides the moving direction of object, and transfers information about moving direction via vehicles network. Bicycle collision avoidance system from our proposed architecture receives this information, and alerts to cyclist when the moving object influences the safety of bicycle.

A Method of Collision Avoidance for Autonomous Mobile Robot using the antenna, IR and ultrasonic (로봇의 자율 주행을 위한 더듬이, IR 및 초음파 센서를 이용한 충돌 회피 방법)

  • Shin, Seung-A;No, In-Ho;Hwang, Taehyun;Shin, Seok Hoon;Shim, Joobo;Oh, Mi Sun;Ko, Jooyoung;Shim, Jaechang
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.10
    • /
    • pp.1236-1246
    • /
    • 2012
  • Autonomous mobile robot has ability to move itself so it can access to danger area or narrow place, and send acquired data by sensors at the same time. In order to drive to directed place, it should progress to the destination without any collision to other robot. In this study, we built and realized the collision avoidance system for autonomous mobile robot. By using antenna, IR and ultrasonic Sensors for collision avoidance, we made it possible to sense the attached and long-distance obstacle, and can avoid. Also, we used wired and wireless network to send the data after the mission.

Development of a coordinated control algorithm using steering torque overlay and differential braking for rear-side collision avoidance (측후방 충돌 회피를 위한 조향 보조 토크 및 차등 제동 분배 제어 알고리즘 개발)

  • Lee, Junyung;Kim, Dongwook;Yi, Kyongsu;Yoo, Hyunjae;Chong, Hyokjin;Ko, Bongchul
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.24-31
    • /
    • 2013
  • This paper describes a coordinated control algorithm for rear-side collision avoidance. In order to assist driver actively and increase driver's safety, the proposed coordinated control algorithm is designed to combine lateral control using a steering torque overlay by Motor Driven Power Steering (MDPS) and differential braking by Vehicle Stability Control (VSC). The main objective of a combined control strategy is twofold. The one is to prevent the collision between the subject vehicle and approaching vehicle in the adjacent lanes. The other is to limit actuator's control inputs and vehicle dynamics to safe values for the assurance of the driver's comfort. In order to achieve these goals, the Lyapunov theory and LMI optimization methods has been employed. The proposed coordinated control algorithm for rear-side collision avoidance has been evaluated via simulation using CarSim and MATLAB/Simulink.

A Study on Algorithm for Aircraft Collision Avoidance Warning (항공기 충돌 회피 경고 알고리듬 연구)

  • Jung, Myung-Jin;Jang, Se-Ah;Choi, Kee-Young;Kim, Jin-Bok;Yang, Kyung-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.515-522
    • /
    • 2012
  • CFIT(Controlled Flight Into Terrain) is one of the major causes of aircraft accidents. In order to solve this problem, GPWS(Ground Proximity Warning System) is used to generate terrain collision warning using the distance between the aircraft and the underneath ground. Since the GPWS uses the vertical clearance only, it frequently generates false warnings. In this study, a terrain/obstacle collision avoidance warning algorithm was developed for fast flying and highly maneuvering fighters using the flight status and the geographic information. This algorithm condsiders the overall delay in the aircraft reactive motion including the pilot's reaction time. The paper presents a detailed logic and test methods.

Method for Collision Avoidance Motion Coordination of Multiple Mobile Robots Using Central Observation (다중 이동 로봇의 중앙 감시에 의한 충돌 회피 동작조정 방법)

  • Ko Nak Yong;Seo Dong-Jin
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.223-232
    • /
    • 2003
  • This paper presents a new method driving multiple robots to their goal position without collision. Each robot adjusts its motion based on the information on the goal location, velocity, and position of the robot and the velocity and position of the .other robots. To consider the movement of the robots in a work area, we adopt the concept of avoidability measure. The avoidability measure figures the degree of how easily a robot can avoid other robots considering the following factors: the distance from the robot to the other robots, velocity of the robot and the other robots. To implement the concept in moving robot avoidance, relative distance between the robots is derived. Our method combines the relative distance with an artificial potential field method. The proposed method is simulated for several cases. The results show that the proposed method steers robots to open space anticipating the approach of other robots. In contrast, the usual potential field method sometimes fails preventing collision or causes hasty motion, because it initiates avoidance motion later than the proposed method. The proposed method can be used to move robots in a robot soccer team to their appropriate position without collision as fast as possible.

Modeling and Control of a Hydraulic Brake Actuator for Vehcile Collision Avoidance Systems (차량 충돌 회피 시스템을 위한 유압브레이크 액츄에이터의 모델링 및 제어)

  • Jo, Yeong-Ju;Ha, Seong-Hyeon;Lee, Gyeong-Su;Heo, Seung-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.537-543
    • /
    • 2000
  • mathematical models for a hydraulic brake actuator and a brake control law for vehicle collision warning/collision avoidance (CW/CA) systems will be presented in this paper. The control law have been designed for optimzied safety and comfort. A solenoid-valve-controlled hydraulic brake actuator system for the CW/CA systems has been investigated, A nonlinear computer model and a linear model of the hydraulic brake actuator system have been developed. Both models were found to represent the actual system with good accuracy. Uncertainties in the brake actuator model have been considered in the design of the control law for the roubustness of the controller. The effects of brake control on CW/CA vehicle response has been investigated via simulations. The simulations were performed using the hydraulic brake system model and a complete nonlinear vehicle model. The results indicate that the proposed brake control law can provide the CW/CA vehicles with an opimized compromise between safety and comfort.

  • PDF

Internet-based Real-time Obstacle Avoidance of a Mobile Robot

  • Ko Jae-Pyung;Lee Jang-Myung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1290-1303
    • /
    • 2005
  • In this research, a remote control system has been developed and implemented, which combines autonomous obstacle avoidance in real-time with force-reflective tele-operation. A tele-operated mobile robot is controlled by a local two-degrees-of-freedom force-reflective joystick that a human operator holds while he is monitoring the screen. In the system, the force-reflective joystick transforms the relation between a mobile robot and the environment to the operator as a virtual force which is generated in the form of a new collision vector and reflected to the operator. This reflected force makes the tele-operation of a mobile robot safe from collision in an uncertain and obstacle-cluttered remote environment. A mobile robot controlled by a local operator usually takes pictures of remote environments and sends the images back to the operator over the Internet. Because of limitations of communication bandwidth and the narrow view-angles of the camera, the operator cannot observe shadow regions and curved spaces frequently. To overcome this problem, a new form of virtual force is generated along the collision vector according to both distance and approaching velocity between an obstacle and the mobile robot, which is obtained from ultrasonic sensors. This virtual force is transferred back to the two-degrees-of-freedom master joystick over the Internet to enable a human operator to feel the geometrical relation between the mobile robot and the obstacle. It is demonstrated by experiments that this haptic reflection improves the performance of a tele-operated mobile robot significantly.

A Study on Dynamic Safety Navigation Envelopes Considering a Ship's Position Uncertainty

  • Pyo-Woong Son;Youngki Kim;Tae Hyun Fang;Kiyeol Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.289-294
    • /
    • 2023
  • As technologies such as cameras, Laser Imaging, Detection, and Ranging (LiDAR), and Global Navigation Satellite Systems (GNSS) become more sophisticated and common, their use in autonomous driving technologies is being explored in various fields. In the maritime area, technologies related to collision avoidance between ships are being developed to evaluate and avoid the risk of collision between ships by setting various scenarios. However, the position of each vessel used in the process of developing collision avoidance technology between vessels uses data obtained through GNSS, and may include a position error of 10 m or more depending on the situation. In this paper, a study on the dynamic safety navigation range including the positional inaccuracy of the ship is conducted. By combining the concept of the protection level obtained using GNSS raw data with a conventional safe navigation range, a safer navigation range can be calculated for dynamic navigation. The calculated range is verified using data obtained while sailing in an actual sea environment.

Real-time obstacle avoidance for redundant manipulator (여유 자유도 로봇의 실시간 충돌 회피)

  • 조웅장;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1140-1143
    • /
    • 1996
  • A new approach based on artificial potential function is proposed for the obstacle avoidance of redundant manipulators. Unlike the so-called "global" path planning method, which requires expensive computation for the path search before the manipulator starts to move, this new approach, "local" path planning, researches the path in real-time using the local distance information. Previous use of artificial potential function has exhibited local minima in some complex environments. This thesis proposes a potential function that has no local minima even for a cluttered environment. This potential function has been implemented for the collision avoidance of a redundant robot in Simulation. The simulation also employ an algorithm that eliminates collisions with obstacles by calculating the repulsive potential exerted on links, based on the shortest distance to object.

  • PDF