• Title/Summary/Keyword: collision

Search Result 4,377, Processing Time 0.035 seconds

Algorithm of collision processing for a shooting game (슈팅게임을 위한 충돌 처리 알고리즘)

  • Seo Jeong-Man
    • KSCI Review
    • /
    • v.14 no.1
    • /
    • pp.249-254
    • /
    • 2006
  • In this paper, I review the collision processing algorithm using existing quadrilateral unit and present problems with it. Then I propose a collision check technique of a small quadrilateral unit, by which the defects with simple quadrilateral collision has been made up for. I finally show that the proposed algorithm can be applied to real games in terms of presenting the experiment results and screen design for implemented real games.

  • PDF

On the Development of Prototype Expert Collision Avoidance System of Automated Ship (자동화선의 평균예상전문가시스템 개발에 관한 연구)

  • 김시화
    • Journal of the Korean Institute of Navigation
    • /
    • v.15 no.2
    • /
    • pp.13-38
    • /
    • 1991
  • This paper intends to develop a Prototype Expert Collision Avoidance System by introducing expert system techniques into the decision block of anti-collision loop. The problem domain of this study is characterized and specified by combining the concepts of anti-collision loop and knowledge -based system for collision avoidance. Domain in knowledge which may originates from the appropriate sources such as the International Regulations for Preventing Collision at Sea 1972, Marine Traffic Laws, and many texts on the subject of anticollision navigation and good seamanship is acquired and formalized into the knowledge-base system using production rule. Finally, a Prototype Expert Collision Avoidance System is built by using the CLIPS, developed by AIS NASA written in and fully integrated with the C language, and some test-and-run results of the system are demonstrated and examined. The author considers the proposed system which is named PECAS to be meaningful as a test bed for a further refined Expert Collision Avoidance System on board the Automated Ship.

  • PDF

Damage Evaluation of Flexible Concrete Mattress Considering Steel Reinforcement Modeling and Collision Angle of Anchor (철근의 영향과 앵커 충돌각도를 고려한 유연콘크리트 매트리스의 손상평가)

  • Ryu, Yeon-Sun;Cho, Hyun-Man;Kim, Seo-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.109-116
    • /
    • 2016
  • A flexible concrete mattress (FCM) is a structural system for protecting submarine power or communication cables under various load types. To evaluate its of protection performance, a numerical analysis of an FCM under an anchor collision was performed. The explicit dynamics of the finite element analysis program ANSYS were used for the collision analysis. The influences of the steel reinforcement modeling and collision angle of the anchor on the collision behavior of the FCM were estimated. The FCM damage was evaluated based on the results of the numerical analysis considering the numerical modeling and collision environment.

A Study on the Collision between Fishing Vessel and non Fishing Vessel using Questionnaire Analysis (설문분석을 통한 어선 비어선간 충돌사고에 관한 연구)

  • Park, Moon-Kab;Jeon, Yeong-Woo;Lee, Yoo-Won
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.3
    • /
    • pp.716-723
    • /
    • 2013
  • The postal or group questionnaire survey was conducted to inquire into the cause of collision between fishing vessel and non-fishing vessel targeting fishing vessel personnel(FVP), non-NFVP and a person involved in a marine accident. As a result, we could verify the root cause of collision, a negligence of lookout which noted overwork for FVP and careless for non-FVP. The cause of collision by inappropriate avoid action was poor communications for FVP and non-FVP. To reduce collision, we need to be trained to take a sharp lookout, a radio communication by VHF and the collision avoidance actions by early and substantial action to keep well clear. The results are expected to contribute for the reduction of collision and victims.

Analysis of Marine Vessel Collision Risk based on Quantitative Risk Assessment

  • Koo, Bon Guk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.319-324
    • /
    • 2018
  • The collision problem is one of the design factors that must be carefully considered for the risk of collision occurring during the operation of ships and offshore structures. This paper presents the main results of the ship collision study, and its main goal is to analyze potential crash scenarios that may occur in the FLNG (Floating Liquefied Natural Gas) considering the likelihood and outcome. Consideration being given to vessels visiting the FLNG and surrounding vessels navigating around, such as functionally supported vessels and offloading carriers. The scope includes vessels visiting the FLNG facility such as in-field support vessels and off-loading carriers, as well as third party passing vessels. In this study, based on QRA (quantitative risk assessment), basic research methods and information on collision are provided. Based on the assumptions and methodologies documented in this study, it has been possible to clarify the frequency of collision and the damage category according to the type of visiting ship. Based on these results, the risk assessment results related to the collision have been derived.

Bitwise Collision Attack Based on Second-Order Distance

  • Wang, Danhui;Wang, An
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1802-1819
    • /
    • 2017
  • Correlation-enhanced collision attack has been proposed by Moradi et al. for several years. However, in practical operations, this method costs lots of time on trace acquisition, storage and averaging due to its bytewise collision detection. In this paper, we propose a bitwise collision attack based on second-order distance model. In this method, only 9 average traces are enough to finish a collision attack. Furthermore, two candidate models are given in this study to distinguish collisions, and the corresponding practical experiments are also performed. The experimental results indicate that the operation time of our attack is only 8% of that of correlation-enhanced collision attack, when the two success rates are both above 0.9.

A Study on the Collision Avoidance of Two Manipulators using Velocity Modifications (속도 변형을 이용한 두 매니퓨레이터의 충돌회피에 대한 연구)

  • Bum-Hee Lee
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.8
    • /
    • pp.563-569
    • /
    • 1988
  • This research presents several velocity modification methods for collision avoidance of two manipulators in a common workspace. Due to the distinct nature of collision avoidance between the two manipulators, a new classification of collision situations is presented and utilized in planning a collision-free path. Concepts of a collision map and velocity modification are applied for realizing collision-free motion planning. An example is shown for velocity modification of a trajectory, which shows the significance of the proposed approaches in collision-free motion planneng of two moving robots.

Using Piecewise Circular Curves as a 2D Collision Primitive

  • Ollington, Robert
    • Asia-Pacific Journal of Business
    • /
    • v.9 no.2
    • /
    • pp.1-13
    • /
    • 2018
  • Physics simulation is an important part of many interactive 2D applications and collision detection and response is key component of this simulation. While methods for reducing the number of collision tests that need to be performed has been well researched, methods for performing the final checks with collision primitives have seen little recent development. This paper presents a new collision primitive, the n-arc, constructed from piecewise circular curves or biarcs. An algorithm for performing a collision check between these primitives is presented and compared to a convex polygon primitive. The n-arc is shown to exhibit similar, though slightly slower, performance to a polygon when no collision occurs, but is considerably faster when a collision does occur. The goodness of fit of the new primitive is also compared to a polygon. While the n-arc often gives a looser fit in terms of area, the continuous tangents of the n-arcs makes them a good choice for organic, soft or curved surfaces.

  • PDF

A Probabilistic Algorithm for Multi-aircraft Collision Detection and Resolution in 3-D

  • Kim, Kwang-Yeon;Park, Jung-Woo;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • This paper presents a real-time algorithm for collision detection, collision avoidance and guidance. Three-dimensional point-mass aircraft models are used. For collision detection, conflict probability is calculated by using the Monte-Carlo Simulation. Time at the closest point of approach(CPA) and distance at CPA are needed to determine the collision probability, being compared to certain threshold values. For collision avoidance, one of possible maneuver options is chosen to minimize the collision probability. For guidance to a designated way-point, proportional navigation guidance law is used. Two scenarios on encounter situation are studied to demonstrate the performance of proposed algorithm.

A Comparative study On 2D Collision Detection Algorithms For Computer Games (컴퓨터게임을 위한 2D 충돌 감지 알고리즘 비교 분석에 관한 연구)

  • Lee, Young-Jae
    • Journal of Korea Game Society
    • /
    • v.1 no.1
    • /
    • pp.42-48
    • /
    • 2001
  • Collision is a brief dynamic event consisting of the close approach of two or more objects or particles resulting in an abrupt change of momentum or exchange of energy because of interaction. Collisions play very important role in computer graphics, computer games and animations fields. Collisions can supply active interaction between cyberspace and real world and give much interests for making nice games so reasonable collision detection algorithms are needed. Collision detection algorithms should satisfy being fast and accuracy. In this paper, we survey the 2D collision detection algorithms between geometric models. We present several methods and system available for collision detection.

  • PDF