• Title/Summary/Keyword: college of korean oriental medicine

Search Result 12,407, Processing Time 0.043 seconds

Induction of Apaopotis by Water Extract of Cordyceps militaris (WECM) in Human Hepatocellular Carcinoma HepG2 Cells. (동충하초 열수 추출물에 의한 인체 간암세포 성장억제 및 apoptosis 유발에 관한 연구)

  • Kim, Kyung-Mi;Park, Cheol;Choi, Yung-Hyun;Lee, Won-Ho
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.804-813
    • /
    • 2008
  • Cordyceps militaris, the Chinese medicinal fungal genus Cordyceps, is reported to possess many pharmacological activities including immunological stimulating, anti-cancer, anti-virus and anti-infection activities. However, the molecular mechanisms of C. militaris on biochemical actions in cancer have not been clearly elucidated yet. In the present study, we investigated the anti-proliferative activity of the water extract of C. militaris (WECM) in human hepatocellular carcinoma HepG2 cells. It was found that WECM could inhibit the cell growth in a dose-dependent manner, which was associated with morphological changes and apoptotic cell death such as formation of apoptotic bodies and increased populations of apoptotic sub-G1 phase. Apoptotic cell death of HepG2 cells by WECM was connected with a up-regulation of pro-apoptotic Bax expression, tumor suppressor p53 and cyclin-dependent kinase inhibitor p21 (WAF1/CIP1). In addition, WECM treatment induced the proteolytic activation of caspase-3 and a concomitant degradation and/or inhibition of poly (ADP-ribose) polymerase (PARP), ${\beta}-catenin$ and phospholipase $(PLC)-{\gamma}1$ protein. Furthermore, caspase-3 inhibitor, z-DEVD-fmk, significantly inhibited WECM-induced apoptosis demonstrating the important role of caspase-3 in the observed cytotoxic effect. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of C. militaris.

Induction of G2/M Arrest of the Cell Cycle by Genistein in Human Bladder Carcinoma and Leukemic Cells (인체 방광암 및 백혈병세포에서 genistein에 의한 세포주기 G2/M arrest 유발에 관한 연구)

  • Kim, Eu-Kyum;Myong, You-Ho;Song, Kwan-Sung;Lee, Ki-Hong;Rhu, Chung-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.589-597
    • /
    • 2006
  • Genistein, a natural isoflavonoid phytoestrogen, is a strong inhibitor of protein tyrosine kinase and DNA topoisomerase activities. There are several studies documenting molecular alterations leading to cell cycle arrest and induction of apoptosis by genistein as a chemopreventive agent in a variety of cancer cell lines; however, its mechanism of action and its molecular targets on human bladder carcinoma and leukemic cells remain unclear. In the present study, we have addressed the mechanism of action by which genistein suppressed the proliferation of T24 bladder carcinoma and U937 leukemic cells. Genistein significantly inhibited the cell growth and induced morphological changes, and induced the G2/M arrest of the cell cycle in both T24 and U937 cells with a relatively stronger cytotoxicity in U937. The G2/M arrest in T24 cells was associated with the inhibition of cyclin A, cyclin B1 and Cdc25C protein expression without alteration of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21(WAF1/CIP1). However, the inhibitory effects of genistein on the cell growth of U937 cells were connected with a marked inhibition of cyclin B1 and an induction of Cdk inhibitor p21 proteins by p53-independent manner. These data suggest that genistein may exert a strong anticancer effect and additional studies will be needed to evaluate the different mechanisms between T24 and U937 cells.

The Effect of Bacillus-Fermented Scutellariae Radix Acupuncture Solution on Interleukin Production in Mouse Macrophage Stimulated by Lipopolysaccharide (바실러스균 발효황금약침액이 Lipopolysaccharide로 활성화된 마우스 대식세포의 인터루킨 생성에 미치는 영향)

  • Park, Wan-Su
    • Korean Journal of Acupuncture
    • /
    • v.27 no.2
    • /
    • pp.95-105
    • /
    • 2010
  • Objectives : The purpose of this study is to investigate the effect of Bacillus-fermented Scutellariae Radix acupuncture solution (SB) on interleukin(IL) production in mouse macrophage stimulatedby lipopolysaccaride(LPS). Methods : Productions of interleukins were measured y High-throughput Multiplex Bead based Assay with Bio-plex Suspension Array System based on $xMAP^{(R)}$(multi-analyte profiling beads) technology. To begin with, cell culture supernatant was obtained after treatment with LPS(1 ${\mu}g/mL$) and SB for 24 hour. Then, it was incubated with the antibody-conj${\mu}g$ated beads for 30 minutes. And detection antibody was added and incubated for 30 minutes. After incubating for 30 minutes, Strepavidin-conjugated Phycoerythrin(SAPE) was then added. Incubating for another 30 minutes, the level of SAPE fluorescence was analyzed on Bio-plex Suspension Array System. Results : The results of the experiment are as follows. SB significantly inhibited the LPS-induced production of IL-3($9.15{\pm}0.35$ pg/mL) by $6.92{\pm}0.05,\;7.21{\pm}0.11,\;6.96{\pm}0.33,\;and\;7.45{\pm}0.74$ pg/mL at the concentration of 25, 50, 100, and 200 ${\mu}g/mL$ in mouse macrophage RAW 264.7 cells (p<0.05). SB significantly inhibited the LPS-induced production of IL-5($7.30{\pm}0.48$ pg/mL) by $6.50{\pm}0.29,\;6.30{\pm}0.25,\;6.30{\pm}0.25,\;and\;5.80{\pm}0.25$ pg/mL at the concentration of 25, 50 100, and 200 ${\mg}g/mL$ in RAW 264.7 cells (p<0.05). SB significantly inhibited the LPS-induced productiion of IL-9($17.26{\pm}0.19$ pg/mL) by $15.01{\pm}0.43$ pg/mL at the concentration of 25 ${\mu}g/mL$ in RAW 264.7 cells(p<0.05). SB significantly inhibited the LPS-induced productioh of IL-13($187.80{\pm}2.90$ pg/mL) by $152.80{\pm}4.25,\;172.80{\pm}3.97,\;162.10{\pm}6.67,\;and\;165.30{\pm}11.80$ pg/mL at the concentration fo 25, 50, 100, and 200 ${\mu}g/mL$ in RAW 264.7 cells(p<0.05). SB significantly inhibited the LPS-induced production of IL-17($18.30{\pm}0.95$ pg/mL) by $13.30{\pm}1.25,\;13.80{\pm}1.11,\;13.30{\pm}0.75,\;and\;14.00{\pm}1.08$ pg/mL at the concentration of 25, 50 100, and 200 ${\mu}g/mL$ in RAW 264.7 cells(p<0.05). SB significantly inhibited the LPS-induced production of IL-23($43.90{\pm}0.83$ pg/mL by $39.50{\pm}1.26,\;38.00{\pm}1.78,\;and\;39.60{\pm}2.49$ pg/mL at the concentration of 25, 100, and 200 ${\mu}g/mL$ in RAW 264.7 cells(p<0.05). Conclusions : These results suggest that SB has anti-inflammatory activity related with its inhibition of IL-3, IL-5, IL-13, IL-17, and IL-23 production in macrophages.

G1 Arrest of U937 Human Monocytic Leukemia Cells by Sodium Butyrate, an HDAC Inhibitor, Via Induction of Cdk Inhibitors and Down-regulation of pRB Phosphorylation (Cdk inhibitors의 발현 증가 및 pRB 인산화 저해에 의한 HDAC inhibitor인 sodium butyrate에 의한 인체백혈병세포의 G1 arrest유발)

  • Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.871-877
    • /
    • 2009
  • We investigated the effects of sodium butyrate, a histone deacetylase inhibitor, on the cell cycle progression in human monocytic leukemia U937 cells. Exposure of U937 cells to sodium butyrate resulted in growth inhibition, G1 arrest of the cell cycle and induction of apoptosis in a dose-dependent manner as measured by MTT assay and flow cytometry analysis. The increase in G1 arrest was associated with the down-regulation in cyclin D1, E, A, cyclin-dependent kinase (Cdk) 4 and 6 expression, and up-regulation of Cdk inhibitors such as p21 and p27. Sodium butyrate treatment also inhibited the phosphorylation of retinoblastoma protein (pRB) and p130, however, the levels of transcription factors E2F-1 and E2F-4 were not markedly modulated. Furthermore, the down-regulation of phosphorylation of pRB and p130 by this compound was associated with enhanced binding of pRB and E2F-1, as well as p130 and E2F-4, respectively. Overall, the present results demonstrate a combined mechanism involving the inhibition of pRBjp130 phosphorylation and induction of Cdk inhibitors as targets for sodium butyrate that may explain some of its anti-cancer effects in U937 cells.

Modulacon of Cell Cycle Control by Histone Deacetylase Inhibitor Trichostatin A in A549 Human Non-small Cell Lung Cancer Cells (인체폐암세포 A549의 세포주기 조절인자에 미치는 histone deacetylase inhibitor trichostatin A의 영향)

  • Hwang Ji Won;Kim Young Min;Hong Su Hyun;Choi Byung Tae;Lee Won Ho;Choi Yung Hyun
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.726-733
    • /
    • 2005
  • Histone deacetylase (HDAC) inhibitors target key steps of tumor development. They inhibit proliferation, induce differentiation and/or apoptotic cell death, and exhibit potent antimetastatic and antiangiogenic properties in cancer cells in vitro and in vivo. Although they are emerging as a promising new treatment strategy in malignancy, how they exert their effect on human non-small cell lung cancer cells is as yet unclear. The present study was undertaken to investiate the underlying mechanism of a HDAC inhibitor trichostatin A (TSA)-induced growth arrest and its effect on the cell cycle control gene products in a human lung carcinoma cell line A549. TSA treaoent induced the growth inhibition and morphological changes in a concentration-dependent manner. Treatment of A549 cells with TSA resulted in a concentration-dependent increased G1 (under 100 ng/ml) and/or G2/M (200 ng/ml) cell population of the cell cycle as determined by flow cytometry Moreover, 200 ng/ml TSA treatment significantly induced the population of sub-G1 cells (23.0 fold of control). This anti-proliferative effect of TSA was accompanied by a marked inhibition of cyclins, positive regulators of cell cycle progression, and cyclin-dependent kinases (Cdks) expression and concomitant induction of tumor suppressor p53 and Cdk inhibitors such as p21 and p27 Although further studies are needed, these findings provide important insights into the possible molecular mechanisms of the anti-cancer activity of TSA in human lung carcinoma cells.

Machilus Thunbergii Water Extract Induces Cytotoxic Effect against Human Acute Jurkat T Lymphoma (후박 열수 추출물의 Jurkat T 세포에서 세포사멸 효과)

  • Kim, Min Hwan;Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.27 no.8
    • /
    • pp.951-957
    • /
    • 2017
  • To understand the cytotoxic activity of Machilus thunbergii, which has been used as a traditional oriental medicine, the mechanism underlying the cytotoxic effect of its extract on human acute Jurkat T cells was investigated. The methanol extract of roots (3 kg) of M. thunbergii was evaporated, dissolved in, and then extracted by water. The water-extracted active substance was designated MTWE. When Jurkat T cells were treated with MTWE at concentrations of 0, 25, 50, and $100{\mu}g/ml$, the apoptotic phenomenon of cells accompanying several subsequent biochemical reactions, such as mitochondrial cytochrome c release, activation of caspase-3, and ICAD degradation, was detected in the Jurkat T cells. Moverover. the expression of Bcl-xL, which is a suppressor for mitochondrial cytochrome c release pathway, was reduced in the Jurkat T cells. As DUSP6, a growth suppressor of cancer cells, ranged from 0, 25, 50, $100{\mu}g/ml$ of MTWE, the expression level was elevated in the Jurkat T cells. The apoptotic morphological change of the nuclei was observed by DAPI staining. Although the potential involvement of the other factors and DUSP6 is currently being investigated in more detail, these findings support the notion that MTWE is able to achieve the apoptosis of Jurkat T cells, and it seems that MTWE is useful as a method of evaluating a chemotherapeutic agent or tonic materials for human acute leukemia.

Systematic Identification of Hepatocellular Proteins Interacting with NS5A of the Hepatitis C Virus

  • Ahn, Ji-Won;Chung, Kyung-Sook;Kim, Dong-Uk;Won, Mi-Sun;Kim, Li-La;Kim, Kyung-Shin;Nam, Mi-Young;Choi, Shin-Jung;Kim, Hyoung-Chin;Yoon, Mi-Chung;Chae, Suhn-Kee;Hoe, Kwang-Lae
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.741-748
    • /
    • 2004
  • The hepatitis C virus is associated with the development of liver cirrhosis and hepatocellular carcinomas. Among the 10 polyproteins produced by the virus, no function has been clearly assigned to the non-structural 5A (NS5A) protein. This study was designed to identify the hepatocellular proteins that interact with NS5A of the HCV. Yeast two-hybrid experiments were performed with a human liver cDNA prey-library, using five different NS5A derivatives as baits, the full-length NS5A (NS5A-F, amino acid (aa) 1~447) and its four different derivatives, denoted as NS5A-A (aa 1~150), -B (aa 1~300), -C (aa 300~447) and D (aa 150~447). NS5A-F, NS5A-B and NS5A-C gave two, two and 10 candidate clones, respectively, including an AHNAK-related protein, the secreted frizzled-related protein 4 (SFRP4), the N-myc downstream regulated gene 1 (NDRG1), the cellular retinoic acid binding protein 1 (CRABP-1), ferritin heavy chain (FTH1), translokin, tumor-associated calcium signal transducer 2 (TACSTD2), phosphatidylinositol 4-kinase (PI4K) and $centaurin{\delta}$ 2 ($CENT{\delta}2$). However, NS5A-A produced no candidates and NS5A-D was not suitable as bait due to transcriptional activity. Based on an in vitro binding assay, CRABP-1, PI4K, $CENT{\delta}2$ and two unknown fusion proteins with maltose binding protein (MBP), were confirmed to interact with the glutathione S-transferase (GST)/NS5A fusion protein. Furthermore, the interactions of CRABP-1, PI4K and $CENT{\delta}2$ were not related to the PXXP motif (class II), as judged by a domain analysis. While their biological relevance is under investigation, the results contribute to a better understanding of the possible role of NS5A in hepatocellular signaling pathways.

Involvement of Cdk Inhibitor p21(WIP1/CIP1) in G2/M Arrest of Human Myeloid Leukemia U937 Cells by N-Methyl-N'-Nitro-N-Nitrosoguanidine (N-methyl-N'-nitro-N-nitrosoguanidine에 의한 인체백혈병세포의 G2/M arrest 유발에서 Cdk inhibitor p21(WIP1/CIP1)의 관련성)

  • Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • In this paper, to elucidate the further mechanisms of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced growth arrest, we investigated the effect of MNNG on cell cycle and proliferation in U937 cells, a p53-null human myeloid leukemia cell line. It was found that MNNG causes an arrest at the G2/M phase of the cell cycle and induces apoptosis, which is closely correlated to inhibition of cyclin B1 and cyelin-dependent kinase (Cdk) 2-associated kinase activities. MNNG treatment in. creased protein and mRNA levels of the Cdk inhibitor p21(WAF1/CIP1), and activated the reporter construct of a p21 promoter. By using p21 promoter deletion constructs, the MNNG-responsive element was mapped to a region between 113 and 61 relative to the transcription start site. These data indicate that in U937 cells MNNG can circumvent the loss of wild-type p53 function and induce critical downstream regulatory events leading to transcriptional activation of p21. Present results indicate that the p53-independent up-regulation of p21 by MNNG is likely responsible for the inhibition of cyclin/Cdk complex kinase activity rather than the down-regulation of cyclins and Cdks expression. These novel phenomena have not been previously described and provide important new insights into the possible biological effects of MNNG.

Isolation and Identification of Sesquiterpene o-Naphthoquinones, Mansonones E, F and H, from the Root Bark of Ulmus davidiana Planch (당느릅나무로부터 Sesquiterpene o-Naphthoquinone류 화합물, Mansonone E, F 및 H의 분리와 구조결정)

  • Kim, Jong-Pyung;Kim, Won-Gon;Koshino, Hiroyuki;Park, Jong-Hee;Jung, Jin;Yoo, Ick-Dong
    • Applied Biological Chemistry
    • /
    • v.39 no.1
    • /
    • pp.89-94
    • /
    • 1996
  • Three sesquiterpene ortho-naphthoquinones were isolated from the methanolic extract of root bark of Ulmus davidiana Planch whose stem and root bark have been used as an oriental medicine for the treatment of edema, mastitis, gastric cancer and inflammation. The structures of these compounds were established on the basis of spectral data obtained from UV-vis, IR, HR-EIMS and NMR spectrometry, including the pulse field gradient (PFG)-HMQC and HMBC techniques. Their structures were determined as 2,3-dihydro-3,6,9-trimethylnaphtho(1,8-b,c)pyran-7,8-dione, 3,6,9-trimethylnaphtho(1,8-b,c)pyran-7,8-dione and 2,3-dihydro-4-hedroxy-3,6, 9-trimethylnaphtho(1,8-b,c)pyran-7,8-dione, which were identified as mansonones E. F and H, respectively. These compounds have originally been isolated from Mansonia altissima Chev, but have never been isolated from Ulmus davidiana Planch. Especially, mansonone H was isolated for the first time from Ulmaceae. The mismatched carbon chemical shifts of mansonones E and F in the reported literature were corrected by the aid of the PFG-HMBC spectral data.

  • PDF

Solid Cultivation of Fibrinolytic Enzyme (Bacillokinase) from Bacilis subtilis BK-17 (Bacillus subtilis BK-17 유래 혈전용해효소(Bacillokinase)의 고체배양)

  • Jeong, Yong-Kee;Beak, Hyun;Seo, Min-Jeong;Kim, Min-Jeong;Lee, Hye-Hyeon;Joo, Woo-Hong;Kim, Jeong-In;Choi, Yung-Hyun;Chung, Kyung-Tae
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1478-1483
    • /
    • 2009
  • A solid-state culture based on grain materials was attempted to produce a fibrinolytic enzyme for blood circulation improvement using Bacillus subtilis BK-17. The spore, rather than vegetative cell inoculation, of B. subtilis BK-17 on the solid-state culture was effective in the production of a fibrinolytic enzyme. Maximum spore production was obtained with a SFM medium (0.8% nutrient broth, 0.05% yeast extract, $10^{-1}$ M $MgCl_2$, $10^{-3}$ M $FeCl_3$, $10^{-4}$ $MnCl_2$, $10^{-5}$ M dipicolic acid, pH 6.5). Optimal pH and temperature were pH 6 and $30^{\circ}C$, respectively. The spore production reached a maximum at 60 hours of incubation. Bacillus subtilis BK-17 on the mung bean solid-state culture produced greater fibrinolytic activity, and less activity was seen in other grains such as kidney bean, soybean and corn. Protein and lipid contents of fermented soybeans were about 10 - 30% more than those of unfermented soybeans. Amino acid content was also 5 - 20% more than that of unfermented soybeans. These results indicated that fermented solid-state culture medium, fermented soybean in this case, can be utilized as a food supplement.