• 제목/요약/키워드: collapse risk

검색결과 240건 처리시간 0.194초

터널 붕괴 위험도 분석을 위한 영향인자 가중치 산정에 관한 연구 (A study on the weighting of influence factors for tunnel collapse risk analysis)

  • 김정흠
    • 한국터널지하공간학회 논문집
    • /
    • 제26권4호
    • /
    • pp.315-326
    • /
    • 2024
  • 본 연구에서는 터널 붕괴 위험도를 종합적이고 다각적인 관점에서 평가하기 위해 델파이 기법과 AHP (analytic hierarchy process) 기법을 사용하였다. 영향인자 정립은 문헌조사, 선행 연구 및 전문가 집단의 브레인스토밍 과정을 통해 총 5개의 상위분류체계를 구축하였다. 21명의 전문가 패널을 구성하여 총 3차의 델파이 조사 과정을 통해 전문가 판단과정에서 오류 및 편향을 방지하여 신뢰성을 향상시켰다. 최종적으로 전문가 답변에 대한 CVR (content validity ration) 및 COV (coefficient of variation) 분석을 수행하여 총 14개의 영향인자를 도출하였다. 이후 AHP 기법을 적용하여 각 영향인자의 상대적 중요도를 평가하고 최종 복합 가중치를 산정하였다. 지보 및 보강 시행시기가 가장 높은 우선순위를 가지며, 지하수 유입량, 절리면 상태, 지보패턴수준, 보조공법이 그 뒤를 이었다. 이러한 연구 결과를 통해 터널붕괴 위험에 영향을 미치는 주요 요인들을 파악하고, 이를 토대로 터널 안전성을 향상시키는 전략을 수립하는데 도움이 될 것으로 기대된다.

Probabilistic analysis of tunnel collapse: Bayesian method for detecting change points

  • Zhou, Binghua;Xue, Yiguo;Li, Shucai;Qiu, Daohong;Tao, Yufan;Zhang, Kai;Zhang, Xueliang;Xia, Teng
    • Geomechanics and Engineering
    • /
    • 제22권4호
    • /
    • pp.291-303
    • /
    • 2020
  • The deformation of the rock surrounding a tunnel manifests due to the stress redistribution within the surrounding rock. By observing the deformation of the surrounding rock, we can not only determine the stability of the surrounding rock and supporting structure but also predict the future state of the surrounding rock. In this paper, we used grey system theory to analyse the factors that affect the deformation of the rock surrounding a tunnel. The results show that the 5 main influencing factors are longitudinal wave velocity, tunnel burial depth, groundwater development, surrounding rock support type and construction management level. Furthermore, we used seismic prospecting data, preliminary survey data and excavated section monitoring data to establish a neural network learning model to predict the total amount of deformation of the surrounding rock during tunnel collapse. Subsequently, the probability of a change in deformation in each predicted section was obtained by using a Bayesian method for detecting change points. Finally, through an analysis of the distribution of the change probability and a comparison with the actual situation, we deduced the survey mark at which collapse would most likely occur. Surface collapse suddenly occurred when the tunnel was excavated to this predicted distance. This work further proved that the Bayesian method can accurately detect change points for risk evaluation, enhancing the accuracy of tunnel collapse forecasting. This research provides a reference and a guide for future research on the probability analysis of tunnel collapse.

Failure pattern of large-scale goaf collapse and a controlled roof caving method used in gypsum mine

  • Chen, Lu;Zhou, Zilong;Zang, Chuanwei;Zeng, Ling;Zhao, Yuan
    • Geomechanics and Engineering
    • /
    • 제18권4호
    • /
    • pp.449-457
    • /
    • 2019
  • Physical model tests were first performed to investigate the failure pattern of multiple pillar-roof support system. It was observed in the physical model tests, pillars were design with the same mechanical parameters in model #1, cracking occurred simultaneously in panel pillars and the roof above barrier pillars. When pillars 2 to 5 lost bearing capacity, collapse of the roof supported by those pillars occurred. Physical model #2 was design with a relatively weaker pillar (pillar 3) among six pillars. It was found that the whole pillar-roof system was divided into two independent systems by a roof crack, and two pillars collapse and roof subsidence events occurred during the loading process, the first failure event was induced by the pillars failure, and the second was caused by the roof crack. Then, for a multiple pillar-roof support system, three types of failure patterns were analysed based on the condition of pillar and roof. It can be concluded that any failure of a bearing component would cause a subsidence event. However, the barrier pillar could bear the transferred load during the stress redistribution process, mitigating the propagation of collapse or cutting the roof to insulate the collapse area. Importantly, some effective methods were suggested to decrease the risk of catastrophic collapse, and the deep-hole-blasting was employed to improve the stability of the pillar and roof support system in a room and pillar mine.

Structural robustness: A revisit

  • Andre, Joao
    • Structural Engineering and Mechanics
    • /
    • 제76권2호
    • /
    • pp.193-205
    • /
    • 2020
  • The growing need for assuring efficient and sustainable investments in civil engineering structures has determined a renovated interest in the rational design of such structures from designers, clients and authorities. As a result, risk-informed decision-making methodologies are increasingly being used as a direct decision tool or as an upper-level layer from which performance-based approaches are then calibrated against. One of the most important and challenging aspects of today's structural design is to adequately handle the system-level effects, the known unknowns and the unknown unknowns. These aspects revolve around assessing and evaluating relevant damage scenarios, namely those involving unacceptable/intolerable damage levels. Hence, the importance of risk analysis of disproportionate collapse, and along with it of robustness. However, the way robustness has been used in modern design codes varies substantially, from simple provisions of prescriptive rules to complex risk analysis of the disproportionate collapse. As a result, implementing design for robustness is still very much a grey area and more so when it comes to defining means to quantify robustness. This paper revisits the most common robustness frameworks, highlighting their merits and limitations, and identifies one among them which is very promising as a way forward to solve the still open challenges.

건축물 안전관리 실태분석을 통한 중점안전관리 대상 및 요소 설정에 관한 연구 (A Study on the Critical Safety Management Buildings and factors by Analyzing the Actual State of Building Safety Management)

  • 김은희
    • 대한건축학회논문집:계획계
    • /
    • 제35권4호
    • /
    • pp.37-44
    • /
    • 2019
  • According to the statistical surveys and studies, insufficient maintenance in the use of existing buildings caused fire and collapse accidents. In this respect, I analyzed the data managed by the current building maintenance and inspection system to find out the actual state of safety management and proposed two significant results. First, regarding the state of the buildings, the safety management status of the small-sized ones, where 20 years or more passed after construction, is the worst and a priority improvement plan is required. Second, there are eight deeply concerning factors for the fire incidents and collapse accidents of buildings. In the order of high risk, these factors are structural strength (seismic design), exterior wall finishing material, basement floor, interior finishing materials, other evacuation facilities, corridors stairs entrances, rooftop, fire partition. We need to have more special designs and management plans regarding high-risk factors as a system to prevent accidents in the building.

Design-oriented acceleration response spectrum for ground vibrations caused by collapse of large-scale cooling towers in NPPs

  • Lin, Feng;Jiang, Wenming
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1402-1411
    • /
    • 2018
  • Nuclear-related facilities can be detrimentally affected by ground vibrations due to the collapse of adjacent cooling towers in nuclear power plants. To reduce this hazard risk, a design-oriented acceleration response spectrum (ARS) was proposed to predict the dynamic responses of nuclear-related facilities subjected to ground vibrations. For this purpose, 20 computational cases were performed based on cooling tower-soil numerical models developed in previous studies. This resulted in about 2664 ground vibration records to build a basic database and five complementary databases with consideration of primary factors that influence ground vibrations. Afterwards, these databases were applied to generate the design-oriented ARS using a response spectrum analysis approach. The proposed design-oriented ARS covers a wide range of natural periods up to 6 s and consists of an ascending portion, a plateau, and two connected descending portions. Spectral parameters were formulated based on statistical analysis. The spectrum was verified by comparing the representative acceleration magnitudes obtained from the design-oriented ARS with those from computational cases using cooling tower-soil numerical models with reasonable consistency.

Moment ratio considering composite beam action for steel special moment frames

  • Sang Whan Han;Soo Ik Cho;Taeo Kim;Kihak Lee
    • Steel and Composite Structures
    • /
    • 제47권4호
    • /
    • pp.489-502
    • /
    • 2023
  • The strong column-weak beam (SCWB) moment ratio is specified in AISC 341 to prevent an abrupt column sway in steel special moment frames (SMFs) during earthquakes. Even when the SCWB requirement is satisfied for an SMF, a column-sway can develop in the SMF. This is because the contribution of the composite beam action developed in the concrete floor slab and its supporting beams was not included while calculating the SCWB moment ratio. In this study, we developed a new method for calculating the SCWB moment ratio that included the contribution of composite beam action. We evaluated the seismic collapse performance of the SMFs considering various risk categories and building heights. We demonstrated that the collapse performance of the SMFs was significantly improved by using the proposed SCWB equation that also satisfied the target performance specified in ASCE 7.

철골 보통모멘트골조의 내진성능 향상을 위한 강도기반 설계 절차 제안 (Proposal of Strength-Based Design Procedure for Improving the Seismic Performance of Steel Ordinary Moment Frames)

  • 김태오;한상환
    • 한국지진공학회논문집
    • /
    • 제28권1호
    • /
    • pp.11-20
    • /
    • 2024
  • The ductility of the system based on the capacity of each structural member constituting the seismic force-resisting system is a significant factor determining the structure's seismic performance. This study aims to provide a procedure to supplement the current seismic design criteria to secure the system's ductility and improve the seismic performance of the steel ordinary moment frames. For the study, a nonlinear analysis was performed on the 9- and 15-story model buildings, and the formation of collapse mechanisms and damage distribution for dynamic loads were analyzed. As a result of analyzing the nonlinear response and damage distribution of the steel ordinary moment frame, local collapse due to the concentration of structural damage was observed in the case where the influence of the higher mode was dominant. In this study, a procedure to improve the seismic performance and avoid inferior dynamic response was proposed by limiting the strength ratio of the column. The proposed procedure effectively improved the seismic performance of steel ordinary moment frames by reducing the probability of local collapse.

급경사지 관리의 체계화를 위한 절차별 개선사항 도출과 발전 방안 연구 (A Study on Development Plan and Derivation of Improvement by Procedure for the Systematization in Steep Slope Management System)

  • 이재준;윤홍식;김윤희;박상현
    • 한국재난정보학회 논문집
    • /
    • 제16권1호
    • /
    • pp.111-122
    • /
    • 2020
  • 연구목적: 효율적인 급경사지관리를 위하여 급경사지 관리 절차의 문제점을 진단하고 개선된 프레임워크를 제안을 통해 인명 및 재산피해를 경감하고자 함에 있다. 연구방법: 붕괴위험지역 지정 절차검토, 지자체 인터뷰, 전문가 자문을 통해 급경사지 관리 전반적 문제점을 도출함 연구결과: 평가 전 선정단계, 관리의 주체, 관리 방법과 관리 단계별 개선되어야 할 요소들을 도출하였다. 결론: 본논문은 제기된 문제점을 확인하여 개선점을 도출하였고 새로운 시스템(안), 급경사지 발전을 위한 연구 방향을 제시하였다.

기계학습알고리즘을 이용한 위험회복지수의 개발과 활용 (Development and Application of Risk Recovery Index using Machine Learning Algorithms)

  • 김선웅
    • Journal of Information Technology Applications and Management
    • /
    • 제23권4호
    • /
    • pp.25-39
    • /
    • 2016
  • Asset prices decline sharply and stock markets collapse when financial crisis happens. Recently we have encountered more frequent financial crises than ever. 1998 currency crisis and 2008 global financial crisis triggered academic researches on early warning systems that aim to detect the symptom of financial crisis in advance. This study proposes a risk recovery index for detection of good opportunities from financial market instability. We use SVM classifier algorithms to separate recovery period from unstable financial market data. Input variables are KOSPI index and V-KOSPI200 index. Our SVM algorithms show highly accurate forecasting results on testing data as well as training data. Risk recovery index is derived from our SVM-trained outputs. We develop a trading system that utilizes the suggested risk recovery index. The trading result records very high profit, that is, its annual return runs to 121%.