• 제목/요약/키워드: collapse prediction software

검색결과 6건 처리시간 0.018초

Collapse risk evaluation method on Bayesian network prediction model and engineering application

  • WANG, Jing;LI, Shucai;LI, Liping;SHI, Shaoshuai;XU, Zhenhao;LIN, Peng
    • Advances in Computational Design
    • /
    • 제2권2호
    • /
    • pp.121-131
    • /
    • 2017
  • Collapse was one of the typical common geological hazards during the construction of tunnels. The risk assessment of collapse was an effective way to ensure the safety of tunnels. We established a prediction model of collapse based on Bayesian Network. 76 large or medium collapses in China were analyzed. The variable set and range of the model were determined according to the statistics. A collapse prediction software was developed and its veracity was also evaluated. At last the software was used to predict tunnel collapses. It effectively evaded the disaster. Establishing the platform can be subsequent perfect. The platform can also be applied to the risk assessment of other tunnel engineering.

확률론적 손상을 고려한 VLCC 잔류 종강도 평가 (Residual Longitudinal Strength of a VLCC Considering Probabilistic Damage Extents)

  • 남지명;정준모;박노식
    • 대한조선학회논문집
    • /
    • 제49권2호
    • /
    • pp.124-131
    • /
    • 2012
  • This paper provides prediction of ultimate longitudinal strengths of hull girder of a VLCC considering probabilistic damage extents due to collision and grounding accidents based on IMO Guideline(2003). The probability density functions of damage extents are expressed as a function of nondimensional damage variables. The accumulated probability levels of 10%, 30%, 50%, and 70% are taken into account for the damage extent estimation. The ultimate strengths have been calculated using in-house software UMADS (Ultimate Moment Analysis of Damaged Ships) which is based on the progressive collapse method. Damage indices are provided for all heeling angles due to any possible flooding of compartments from $0^{\circ}$ to $180^{\circ}$ which represent from sagging to hogging conditions, respectively. The analysis results reveal that minimum damage indices show different values according to heeling angles and damage levels.

Residual ultimate strength of a very large crude carrier considering probabilistic damage extents

  • Choung, Joonmo;Nam, Ji-Myung;Tayyar, Gokhan Tansel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권1호
    • /
    • pp.14-26
    • /
    • 2014
  • This paper provides the prediction of ultimate longitudinal strengths of the hull girders of a very large crude carrier considering probabilistic damage extent due to collision and grounding accidents based on IMO Guidelines (2003). The probabilistic density functions of damage extent are expressed as a function of non-dimensional damage variables. The accumulated probabilistic levels of 10%, 30%, 50%, and 70% are taken into account for the estimation of damage extent. The ultimate strengths have been calculated using the in-house software called Ultimate Moment Analysis of Damaged Ships which is based on the progressive collapse method, with a new convergence criterion of force vector equilibrium. Damage indices are provided for several probable heeling angles from $0^{\circ}$ (sagging) to $180^{\circ}$ (hogging) due to collision- and grounding-induced structural failures and consequent flooding of compartments. This paper proves from the residual strength analyses that the second moment of area of a damage section can be a reliable index for the estimation of the residual ultimate strength. A simple polynomial formula is also proposed based on minimum residual ultimate strengths.

Gaussian process regression model to predict factor of safety of slope stability

  • Arsalan, Mahmoodzadeh;Hamid Reza, Nejati;Nafiseh, Rezaie;Adil Hussein, Mohammed;Hawkar Hashim, Ibrahim;Mokhtar, Mohammadi;Shima, Rashidi
    • Geomechanics and Engineering
    • /
    • 제31권5호
    • /
    • pp.453-460
    • /
    • 2022
  • It is essential for geotechnical engineers to conduct studies and make predictions about the stability of slopes, since collapse of a slope may result in catastrophic events. The Gaussian process regression (GPR) approach was carried out for the purpose of predicting the factor of safety (FOS) of the slopes in the study that was presented here. The model makes use of a total of 327 slope cases from Iran, each of which has a unique combination of geometric and shear strength parameters that were analyzed by PLAXIS software in order to determine their FOS. The K-fold (K = 5) technique of cross-validation (CV) was used in order to conduct an analysis of the accuracy of the models' predictions. In conclusion, the GPR model showed excellent ability in the prediction of FOS of slope stability, with an R2 value of 0.8355, RMSE value of 0.1372, and MAPE value of 6.6389%, respectively. According to the results of the sensitivity analysis, the characteristics (friction angle) and (unit weight) are, in descending order, the most effective, the next most effective, and the least effective parameters for determining slope stability.

Analysis of Time-Series data According to Water Reduce Ratio and Temperature and Humidity Changes Affecting the Decrease in Compressive Strength of Concrete Using the SARIMA Model

  • Kim, Joon-Yong
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권10호
    • /
    • pp.123-130
    • /
    • 2022
  • 본 논문은 건설현장의 콘크리트 붕괴사고를 사전에 예방하기 위한 조치 중 하나로 감수율에 따른 콘크리트강도 저하에 영향을 미치는 일일 시간대별 변화와 온도의 변화를 시계열데이터로 축적된 기상청 자료를 기반으로 분석했다. 감수율 발생 구간의 예측을 확인할 신뢰성 있는 모델로 규칙적이고 명확한 시계열데이터 모델에 적합한 SARIMA모델을 통하여 p_value는 0.5 이하, coef는 일방향으로 나타나는 등 검증 항목들이 신뢰성 확보에 유의미한 결과를 얻었다. 이러한 신뢰를 바탕으로 확보한 데이터를 이용하여 시간대별 온도변화와 구간별 감수율을 분석한 결과 7~8월, 12~13시, 29~31℃ 구간이 가장 큰 감수율을 나타냄을 알 수 있다. 연구 결과를 이용하여 연구 결과 구간의 요인이 발생하면 배치플랜트에서 물-시멘트 배합설계 시 감수율을 반영한 레미콘을 생산하여 감수율에 따른 콘크리트 압축강도 저하를 예방할 수 있을 것으로 기대된다.

Study on the influence of structural and ground motion uncertainties on the failure mechanism of transmission towers

  • Zhaoyang Fu;Li Tian;Xianchao Luo;Haiyang Pan;Juncai Liu;Chuncheng Liu
    • Earthquakes and Structures
    • /
    • 제26권4호
    • /
    • pp.311-326
    • /
    • 2024
  • Transmission tower structures are particularly susceptible to damage and even collapse under strong seismic ground motions. Conventional seismic analyses of transmission towers are usually performed by considering only ground motion uncertainty while ignoring structural uncertainty; consequently, the performance evaluation and failure prediction may be inaccurate. In this context, the present study numerically investigates the seismic responses and failure mechanism of transmission towers by considering multiple sources of uncertainty. To this end, an existing transmission tower is chosen, and the corresponding three-dimensional finite element model is created in ABAQUS software. Sensitivity analysis is carried out to identify the relative importance of the uncertain parameters in the seismic responses of transmission towers. The numerical results indicate that the impacts of the structural damping ratio, elastic modulus and yield strength on the seismic responses of the transmission tower are relatively large. Subsequently, a set of 20 uncertainty models are established based on random samples of various parameter combinations generated by the Latin hypercube sampling (LHS) method. An uncertainty analysis is performed for these uncertainty models to clarify the impacts of uncertain structural factors on the seismic responses and failure mechanism (ultimate bearing capacity and failure path). The numerical results show that structural uncertainty has a significant influence on the seismic responses and failure mechanism of transmission towers; different possible failure paths exist for the uncertainty models, whereas only one exists for the deterministic model, and the ultimate bearing capacity of transmission towers is more sensitive to the variation in material parameters than that in geometrical parameters. This research is expected to provide an in-depth understanding of the influence of structural uncertainty on the seismic demand assessment of transmission towers.