• 제목/요약/키워드: collapse fragility curves

검색결과 45건 처리시간 0.022초

Seismic collapse risk of RC frames with irregular distributed masonry infills

  • Li, Yan-Wen;Yam, Michael C.H.;Cao, Ke
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.421-433
    • /
    • 2020
  • Masonry infills are normally considered as non-structural elements in design practice, therefore, the interaction between the bounding frame and the strength contribution of masonry infills is commonly ignored in the seismic analysis work of the RC frames. However, a number of typical RC frames with irregular distributed masonry infills have suffered from undesirable weak-story failure in major earthquakes, which indicates that ignoring the influence of masonry infills may cause great seismic collapse risk of RC frames. This paper presented the investigation on the risk of seismic collapse of RC frames with irregularly distributed masonry infills through a large number of nonlinear time history analyses (NTHAs). Based on the results of NTHAs, seismic fragility curves were developed for RC frames with various distribution patterns of masonry infills. It was found that the existence of masonry infills generally reduces the collapse risk of the RC frames under both frequent happened and very strong earthquakes, however, the severe irregular distribution of masonry infills, such as open ground story scenario, results in great risk of forming a weak story failure. The strong-column weak-beam (SCWB) ratio has been widely adopted in major seismic design codes to control the potential of weak story failures, where a SCWB ratio value about 1.2 is generally accepted as the lower limit. In this study, the effect of SCWB ratio on inter-story drift distribution was also parametrically investigated. It showed that improving the SCWB ratio of the RC frames with irregularly distributed masonry infills can reduce inter-story drift concentration index under earthquakes, therefore, prevent weak story failures. To achieve the same drift concentration index limit of the bare RC frame with SCWB ratio of about 1.2, which is specified in ACI318-14, the SCWB ratio of masonry-infilled RC frames should be no less than 1.5. For the open ground story scenario, this value can be as high as 1.8.

Seismic probabilistic risk assessment of weir structures considering the earthquake hazard in the Korean Peninsula

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Earthquakes and Structures
    • /
    • 제13권4호
    • /
    • pp.421-427
    • /
    • 2017
  • Seismic safety evaluation of weir structure is significant considering the catastrophic economical consequence of operational disruption. In recent years, the seismic probabilistic risk assessment (SPRA) has been issued as a key area of research for the hydraulic system to mitigate and manage the risk. The aim of this paper is to assess the seismic probabilistic risk of weir structures employing the seismic hazard and the structural fragility in Korea. At the first stage, probabilistic seismic hazard analysis (PSHA) approach is performed to extract the hazard curve at the weir site using the seismic and geological data. Thereafter, the seismic fragility that defines the probability of structural collapse is evaluated by using the incremental dynamic analysis (IDA) method in accordance with the four different design limit states as failure identification criteria. Consequently, by combining the seismic hazard and fragility results, the seismic risk curves are developed that contain helpful information for risk management of hydraulic structures. The tensile stress of the mass concrete is found to be more vulnerable than other design criteria. The hazard deaggregation illustrates that moderate size and far source earthquakes are the most likely scenario for the site. In addition, the annual loss curves for two different hazard source models corresponding to design limit states are extracted.

Influence of strong ground motion duration on reinforced concrete walls

  • Flores, Camilo;Bazaez, Ramiro;Lopez, Alvaro
    • Earthquakes and Structures
    • /
    • 제21권5호
    • /
    • pp.477-487
    • /
    • 2021
  • This study focuses on the influence of strong ground motion duration on the response and collapse probability of reinforced concrete walls with a predominant response in flexure. Walls with different height and mass were used to account for a broad spectrum of configurations and fundamental periods. The walls were designed following the specifications of the Chilean design code. Non-linear models of the reinforced concrete walls using a distributed plasticity approach were performed in OpenSees and calibrated with experimental data. Special attention was put on modeling strength and stiffness degradation. The effect of duration was isolated using spectrally equivalent ground motions of long and short duration. In order to assess the behavior of the RC shear walls, incremental dynamic analyses (IDA) were performed, and fragility curves were obtained using cumulative and non-cumulative engineering demand parameters. The spectral acceleration at the fundamental period of the wall was used as the intensity measure (IM) for the IDAs. The results show that the long duration ground motion set decreases the average collapse capacity in walls of medium and long periods compared to the results using the short duration set. Also, it was found that a lower median intensity is required to achieve moderate damage states in the same medium and long period wall models. Finally, strength and stiffness degradation are important modelling parameters and if they are not included, the damage in reinforced concrete walls may be greatly underestimated.

Reliability analysis of braced frames subjected to near field ground motions

  • Sistani, Asma;Asgarian, Behrouz;Jalaeefar, Ali
    • Earthquakes and Structures
    • /
    • 제5권6호
    • /
    • pp.733-751
    • /
    • 2013
  • Near field ground motions have caused several structural damages in recent decades. As a result, seismic codes are being updated with related requirements. In this paper a comparative study on the seismic behavior of concentrically braced frames (CBFs) designed based on different seismic codes is performed. Reliability of various frames with different heights and bracing types are analyzed based on the results of "Incremental Dynamic Analysis" (IDA) under near field ground motions. Fragility curves corresponding to IO (Immediate Occupancy) and CP (Collapse Prevention) limit states are extracted based on IDA curves. Results imply that, frames designed based on the near field seismic design criteria of UBC-97 are more reliable under near field ground motions and their failure probability is less comparing to others.

Seismic collapse safety of high-rise RC moment frames supported on two ground levels

  • Wu, Yun-Tian;Zhou, Qing;Wang, Bin;Yang, Yeong-Bin;Lan, Tian-Qing
    • Earthquakes and Structures
    • /
    • 제14권4호
    • /
    • pp.349-360
    • /
    • 2018
  • Reinforced concrete (RC) moment frames supported on two ground levels have been widely constructed in mountainous areas with medium to high seismicity in China. In order to investigate the seismic collapse behavior and risk, a scaled frame model was tested under constant axial load and reversed cyclic lateral load. Test results show that the failure can be induced by the development of story yielding at the first story above the upper ground. The strong column and weak beam mechanism can be well realized at stories below the upper ground. Numerical analysis model was developed and calibrated with the test results. Three pairs of six case study buildings considering various structural configurations were designed and analyzed, showing similar dynamic characteristics between frames on two ground levels and flat ground of each pair. Incremental dynamic analyses (IDA) were then conducted to obtain the seismic collapse fragility curves and collapse margin ratios of nine analysis cases designated based on the case study buildings, considering amplification of earthquake effect and strengthening measures. Analysis results indicate that the seismic collapse safety is mainly determined by the stories above the upper ground. The most probable collapse mechanism may be induced by the story yielding of the bottom story on the upper ground level. The use of tie beam and column strengthening can effectively enhance the seismic collapse safety of frames on two ground levels.

The development of the seismic fragility curves of existing bridges in Indonesia (Case study: DKI Jakarta)

  • Veby Citra Simanjuntak;Iswandi Imran;Muslinang Moestopo;Herlien D. Setio
    • Structural Monitoring and Maintenance
    • /
    • 제10권1호
    • /
    • pp.87-105
    • /
    • 2023
  • Seismic regulations have been updated from time to time to accommodate an increase in seismic hazards. Comparison of seismic fragility of the existing bridges in Indonesia from different historical periods since the era before 1990 will be the basis for seismic assessment of the bridge stock in Indonesia, most of which are located in earthquake-prone areas, especially those built many years ago with outdated regulations. In this study, seismic fragility curves were developed using incremental non-linear time history analysis and more holistically according to the actual strength of concrete and steel material in Indonesia to determine the uncertainty factor of structural capacity, βc. From the research that has been carried out, based on the current seismic load in SNI 2833:2016/Seismic Map 2017 (7% probability of exceedance in 75 years), the performance level of the bridge in the era before SNI 2833:2016 was Operational-Life Safety whereas the performance level of the bridge designed with SNI 2833:2016 was Elastic - Operational. The potential for more severe damage occurs in greater earthquake intensity. Collapse condition occurs at As = FPGA x PGA value of bridge Era I = 0.93 g; Era II = 1.03 g; Era III = 1.22 g; Era IV = 1.54 g. Furthermore, the fragility analysis was also developed with geometric variations in the same bridge class to see the effect of these variations on the fragility, which is the basis for making bridge risk maps in Indonesia.

Probabilistic seismic evaluation of buckling restrained braced frames using DCFD and PSDA methods

  • Asgarian, Behrouz;Golsefidi, Edris Salehi;Shokrgozar, Hamed Rahman
    • Earthquakes and Structures
    • /
    • 제10권1호
    • /
    • pp.105-123
    • /
    • 2016
  • In this paper, using the probabilistic methods, the seismic demand of buckling restrained braced frames subjected to earthquake was evaluated. In this regards, 4, 6, 8, 10, 12 and 14-storybuildings with different buckling restrained brace configuration (including diagonal, split X, chevron V and Inverted V bracings) were designed. Because of the inherent uncertainties in the earthquake records, incremental dynamical analysis was used to evaluate seismic performance of the structures. Using the results of incremental dynamical analysis, the "capacity of a structure in terms of first mode spectral acceleration", "fragility curve" and "mean annual frequency of exceeding a limit state" was determined. "Mean annual frequency of exceeding a limit state" has been estimated for immediate occupancy (IO) and collapse prevention (CP) limit states using both Probabilistic Seismic Demand Analysis (PSDA) and solution "based on displacement" in the Demand and Capacity Factor Design (DCFD) form. Based on analysis results, the inverted chevron (${\Lambda}$) buckling restrained braced frame has the largest capacity among the considered buckling restrained braces. Moreover, it has the best performance among the considered buckling restrained braces. Also, from fragility curves, it was observed that the fragility probability has increased with the height.

Bayesian demand model based seismic vulnerability assessment of a concrete girder bridge

  • Bayat, M.;Kia, M.;Soltangharaei, V.;Ahmadi, H.R.;Ziehl, P.
    • Advances in concrete construction
    • /
    • 제9권4호
    • /
    • pp.337-343
    • /
    • 2020
  • In the present study, by employing fragility analysis, the seismic vulnerability of a concrete girder bridge, one of the most common existing structural bridge systems, has been performed. To this end, drift demand model as a fundamental ingredient of any probabilistic decision-making analyses is initially developed in terms of the two most common intensity measures, i.e., PGA and Sa (T1). Developing a probabilistic demand model requires a reliable database that is established in this paper by performing incremental dynamic analysis (IDA) under a set of 20 ground motion records. Next, by employing Bayesian statistical inference drift demand models are developed based on pre-collapse data obtained from IDA. Then, the accuracy and reasonability of the developed models are investigated by plotting diagnosis graphs. This graphical analysis demonstrates probabilistic demand model developed in terms of PGA is more reliable. Afterward, fragility curves according to PGA based-demand model are developed.

부산 및 인천항만 안벽구조물의 지진취약도 예측 (Estimation of Seismic Fragility for Busan and Incheon Harbor Quay Walls)

  • 김영진;김동현;이기남;박우선
    • 한국해안·해양공학회논문집
    • /
    • 제25권6호
    • /
    • pp.412-421
    • /
    • 2013
  • 최근 서해안 등지에서 중소규모 지진이 빈번하게 발생하고 있다. 이러한 지진에 의한 항만 구조물의 손상 및 파괴는 국가 경제에 큰 피해를 유발할 수 있다. 따라서 이러한 지진에 대비하기 위한 내진 설계 및 지진 경보시스템 개발이 필요한 실정이다. 본 연구에서는 항만 지진 피해 예측 시스템에 입력치 제공을 위한 부산 및 인천항의 안벽 구조물의 지진 취약도 해석을 수행하였다. 해석 대상은 부산 및 인천항의 잔교식, Caisson식, 부벽식, 블록식 안벽을 각각 4가지 Case를 해석하였으며 기능수행수준 및 붕괴방지수준에 대하여 변위기반 지진취약도 해석을 수행하였고 해석결과를 다른 항만의 안벽에도 적용할 수 있도록 회귀분석하였다.

RFPB 받침을 사용한 Steel Box 교량의 손상도 곡선 (Fragility Curve of Steel Box Bridge Using RFPB Bearing)

  • 이종헌;서상목;김운학
    • 한국재난정보학회 논문집
    • /
    • 제7권3호
    • /
    • pp.171-180
    • /
    • 2011
  • 최근 발생한 일본 대지진으로, 지진에 대한 피해를 최소화 할 수 있는 내진 설계의 필요성과 기존 구조물의 성능 향상에 대한 관심이 더욱 증가하고 있다. 사회기반시설물인 교량 등의 손상 붕괴는 사회적 경제적으로 미치는 파급효과가 커 이러한 구조물에 대한 내진성능의 평가가 상당히 중요하게 부각되고 있다. 내진성능에 대한 검토방법들은 결정론적 방법에 의한 것이 대다수로 각각의 부재에 대한 안전성 수준의 평가에는 실용적이지만 전체의 안전성 평가에는 실용적이지 못해 지진에 대한 구조물의 안전성 평가에는 손상단계에 따른 취약성 또는 손상도를 평가하는 방법이 필요하다. 본 논문에서는 탄성마찰포트받침(RFPB)을 사용한 Steel Box 교량에 대하여 지진의 특성인 PGA, PGV, SA, SV, SI 에 대한 손상도 곡선을 구하고, 이를 마찰포트받침(FPB)을 갖는 교량의 손상도곡선과 비교함으로써 두 지진 격리 장치의 성능을 비교 평가하였다.