• Title/Summary/Keyword: collapse design

Search Result 703, Processing Time 0.023 seconds

Probabilistic seismic evaluation of buckling restrained braced frames using DCFD and PSDA methods

  • Asgarian, Behrouz;Golsefidi, Edris Salehi;Shokrgozar, Hamed Rahman
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.105-123
    • /
    • 2016
  • In this paper, using the probabilistic methods, the seismic demand of buckling restrained braced frames subjected to earthquake was evaluated. In this regards, 4, 6, 8, 10, 12 and 14-storybuildings with different buckling restrained brace configuration (including diagonal, split X, chevron V and Inverted V bracings) were designed. Because of the inherent uncertainties in the earthquake records, incremental dynamical analysis was used to evaluate seismic performance of the structures. Using the results of incremental dynamical analysis, the "capacity of a structure in terms of first mode spectral acceleration", "fragility curve" and "mean annual frequency of exceeding a limit state" was determined. "Mean annual frequency of exceeding a limit state" has been estimated for immediate occupancy (IO) and collapse prevention (CP) limit states using both Probabilistic Seismic Demand Analysis (PSDA) and solution "based on displacement" in the Demand and Capacity Factor Design (DCFD) form. Based on analysis results, the inverted chevron (${\Lambda}$) buckling restrained braced frame has the largest capacity among the considered buckling restrained braces. Moreover, it has the best performance among the considered buckling restrained braces. Also, from fragility curves, it was observed that the fragility probability has increased with the height.

A Reliability Analysis of a Guyed Tower (Guyed Tower의 신뢰성 해석)

  • Tae-B.,Ha;Hang-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.2
    • /
    • pp.29-35
    • /
    • 1987
  • As offshore activities move into deeper ocean, conventional fixed-base platforms drastically increase in size and cost, One of alternatives available is a guyed tower, in which environmental loads are supported by guylines instead of structural members. The guying system of the guyed tower is designed on one hand to be stiff enough to limit the structural displacement in normal operations, but on the other hand to be soft enough to permit large slow sways during the presence of design-level storms. This compliancy provides an efficient means of withstanding harsh environment so that the disproportionate increase in size of deep water platforms can be kept to a rational limit. Novel configurations contain always some degrees of potential risks mainly due to the lack of experience. The most critical hazard inherent to a guyed tower may be the pullout of anchor piles. Once it happens, the guyline fails to function and it may eventually lead to the total collapse of the system. It is the aim of this paper to discuss and quantify the anchor-pullout risk of a guyed tower. A stochastic analysis is made for evaluating the first-upcrossing probability of the tension acting on anchor piles over the uplift capacity. Nonlinearities involved in the mooring stiffness and hydrodynamics are taken into account by using time-domain analysis. A simplified two dimensional dynamic model is developed to exemplify the underlying concept. Real hurricane data in the Gulf of Mexico spanning over 70 years are incorporated in a numerical example of which result clearly indicates highly potential risk of anchor pullout.

  • PDF

Burst strength behaviour of an aging subsea gas pipeline elbow in different external and internal corrosion-damaged positions

  • Lee, Geon Ho;Pouraria, Hassan;Seo, Jung Kwan;Paik, Jeom Kee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.435-451
    • /
    • 2015
  • Evaluation of the performance of aging structures is essential in the oil and gas industry, where the inaccurate prediction of structural performance can have significantly hazardous consequences. The effects of structure failure due to the significant reduction in wall thickness, which determines the burst strength, make it very complicated for pipeline operators to maintain pipeline serviceability. In other words, the serviceability of gas pipelines and elbows needs to be predicted and assessed to ensure that the burst or collapse strength capacities of the structures remain less than the maximum allowable operation pressure. In this study, several positions of the corrosion in a subsea elbow made of API X42 steel were evaluated using both design formulas and numerical analysis. The most hazardous corrosion position of the aging elbow was then determined to assess its serviceability. The results of this study are applicable to the operational and elbow serviceability needs of subsea pipelines and can help predict more accurate replacement or repair times.

Seismic fragility and risk assessment of an unsupported tunnel using incremental dynamic analysis (IDA)

  • Moayedifar, Arsham;Nejati, Hamid Reza;Goshtasbi, Kamran;Khosrotash, Mohammad
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.705-714
    • /
    • 2019
  • Seismic assessment of underground structures is one of the challenging problems in engineering design. This is because there are usually many sources of uncertainties in rocks and probable earthquake characteristics. Therefore, for decreasing of the uncertainties, seismic response of underground structures should be evaluated by sufficient number of earthquake records which is scarcely possible in common seismic assessment of underground structures. In the present study, a practical risk-based approach was performed for seismic risk assessment of an unsupported tunnel. For this purpose, Incremental Dynamic Analysis (IDA) was used to evaluate the seismic response of a tunnel in south-west railway of Iran and different analyses were conducted using 15 real records of earthquakes which were chosen from the PEER ground motion database. All of the selected records were scaled to different intensity levels (PGA=0.1-1.7 g) and applied to the numerical models. Based on the numerical modeling results, seismic fragility curves of the tunnel under study were derived from the IDA curves. In the next, seismic risk curve of the tunnel were determined by convolving the hazard and fragility curves. On the basis of the tunnel fragility curves, an earthquake with PGA equal to 0.35 g may lead to severe damage or collapse of the tunnel with only 3% probability and the probability of moderate damage to the tunnel is 12%.

The Effect of Managerial Ownership on Stock Price Crash Risk in Distribution and Service Industries

  • RYU, Haeyoung;CHAE, Soo-Joon
    • Journal of Distribution Science
    • /
    • v.19 no.1
    • /
    • pp.27-35
    • /
    • 2021
  • Purpose: This study is to investigate the effect of managerial ownership level in distribution and service companies on the stock price crash. The managerial ownership level affects the firm's information disclosure policy. If managers conceal or withholds business-related unfavorable factors over a long period, the firm's stock price is likely to plummet. In a similar vein, management's equity affects information opacity, and information asymmetry affects stock price collapse. Research design, data, and methodology: A regression analysis is conducted using the data on companies listed on the Korea Composite Stock Price Index (KOSPI) between 2012-2017 to examine the effect of the managerial ownership level on stock price crash risks. Results: Logistic and regression results indicate that the stock price crash risk was reduced as managerial ownership levels are increased. The managerial ownership level has a significant negative coefficient on stock price crash risk, negative conditional return skewness of firm-specific weekly return distribution, and asymmetric volatility between positive and negative price-to-earnings ratios. Conclusions: As the ownership and management align, the likeliness of withholding business-related information is reduced. This study's results imply that the stock price crash risk reduces as the managerial ownership level increases because shareholder and manager interests coincide, thereby reducing information asymmetry.

Towards Sustainability of Single-Owner Entities: An Examination of Financial Factors That Influence Growth of Sole Proprietorship

  • MAKUDZA, Forbes;MANDONGWE, Lucia;MURIDZI, Gibson
    • The Journal of Industrial Distribution & Business
    • /
    • v.13 no.5
    • /
    • pp.15-26
    • /
    • 2022
  • Purpose: There has been a consistent failure of businesses that are run by a single person. Most of these collapse at infancy prematurely and those that survive continue to operate at minimal capacity. The study thus sought to enhance growth of sole proprietors from being small entities to large corporates. Financial determinants of business growth were earmarked for research as they were amongst the grey areas of business growth research. Research design, data and methodology: The target population of the study was made up of groceries retail sole proprietors operating in Epworth, Zimbabwe. Questionnaires were used in a once-off cross-sectional survey using stratified random sampling. Through a deductive research approach, four financial determinants of business growth were established namely financial availability, financial management, financial evaluation and financial investment (AMEI). These constructs formulated the basis for the development of the model which linked financial factors to business growth. Results: The study found out that all four financial determinants were statistically significant (P < 0.05) in predicting business growth. Conclusions: The study concludes that the model tested was useful in explaining sole proprietor's business growth. Sole proprietors should have access to funding, manage received funds in an appropriate manner, invest into the business and evaluate their business processes.

Strength Characteristics of Passive Fire Protection Material Applied Structural Members on Fire Load (수동화재보호 재료가 적용된 구조부재의 화재하중에 대한 강도 특성)

  • Jo, Sang Chan;Yu, Seung Su;Seo, Jung Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.29-38
    • /
    • 2022
  • In offshore installations, fires cause the structure to lose its rigidity and it leads to structural integrity and stability problems. The Passive Fire Protection (PFP) system slows the transfer rate of fire heat and helps prevent the collapse of structures and fatality. Especially, intumescent epoxy coating is widely used in the offshore industry, and not only is the material cost expensive, but it also takes a lot of time and cost for construction. Several studies have been conducted on the efficient application and optimal design of the PFP system. However, the mechanical properties and the strength of the PFP material have not been considered. In addition, researches on the correlation between the thickness of PFP and the structural behavior were insufficient. Therefore, this study aims to analyze the thermal and mechanical effects of the PFP on the structure when it is applied to the structural member. In particular, it is intended to resolve the change in strength characteristics of the structural members as the thickness of the PFP increases.

Prediction of the static and dynamic mechanical properties of sedimentary rock using soft computing methods

  • Lawal, Abiodun I.;Kwon, Sangki;Aladejare, Adeyemi E.;Oniyide, Gafar O.
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.313-324
    • /
    • 2022
  • Rock properties are important in the design of mines and civil engineering excavations to prevent the imminent failure of slopes and collapse of underground excavations. However, the time, cost, and expertise required to perform experiments to determine those properties are high. Therefore, empirical models have been developed for estimating the mechanical properties of rock that are difficult to determine experimentally from properties that are less difficult to measure. However, the inherent variability in rock properties makes the accurate performance of the empirical models unrealistic and therefore necessitate the use of soft computing models. In this study, Gaussian process regression (GPR), artificial neural network (ANN) and response surface method (RSM) have been proposed to predict the static and dynamic rock properties from the P-wave and rock density. The outcome of the study showed that GPR produced more accurate results than the ANN and RSM models. GPR gave the correlation coefficient of above 99% for all the three properties predicted and RMSE of less than 5. The detailed sensitivity analysis is also conducted using the RSM and the P-wave velocity is found to be the most influencing parameter in the rock mechanical properties predictions. The proposed models can give reasonable predictions of important mechanical properties of sedimentary rock.

Probabilistic study on buildings with MTMD system in different seismic performance levels

  • Etedali, Sadegh
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.429-441
    • /
    • 2022
  • A probabilistic assessment of the seismic-excited buildings with a multiple-tuned-mass-damper (MTMD) system is carried out in the presence of uncertainties of the structural model, MTMD system, and the stochastic model of the seismic excitations. A free search optimization procedure of the individual mass, stiffness and, damping parameters of the MTMD system based on the snap-drift cuckoo search (SDCS) optimization algorithm is proposed for the optimal design of the MTMD system. Considering a 10-story structure in three cases equipped with single tuned mass damper (STMS), 5-TMD and 10-TMD, sensitivity analyses are carried out using Sobol' indices based on the Monte Carlo simulation (MCS) method. Considering different seismic performance levels, the reliability analyses are done using MCS and kriging-based MCS methods. The results show the maximum structural responses are more affected by changes in the PGA and the stiffness coefficients of the structural floors and TMDs. The results indicate the kriging-based MCS method can estimate the accurate amount of failure probability by spending less time than the MCS. The results also show the MTMD gives a significant reduction in the structural failure probability. The effect of the MTMD on the reduction of the failure probability is remarkable in the performance levels of life safety and collapse prevention. The maximum drift of floors may be reduced for the nominal structural system by increasing the TMDs, however, the complexity of the MTMD model and increasing its corresponding uncertainty sources can be caused a slight increase in the failure probability of the structure.

A Study on the Development of Intelligent Transport System Center for Integrated Road Transport Information Service System (통합도로교통정보 서비스 체계 구현을 위한 교통정보센터 개발 연구)

  • Chung, Sung-Hak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.259-270
    • /
    • 2009
  • The objective of this study is to provide systematic design of the Korea's Integrated Road Transport System in intelligent transport systems. Integrated Road Transport System services support safety driving and traffic information for travellers, and rapid response of the system for emergency status not only dissemination of traffic for traffic but also flood, heavy snowfall, falling rocks, closed-road, collapse, accident and so on. Therefore, integrated road transport system service contributes national highway safety management system to the voice of the nation of integrated road transport system center service for user friendly.