• Title/Summary/Keyword: collapse design

Search Result 705, Processing Time 0.023 seconds

A Comparative Study on the Buckling Characteristics of Single-layer and Double-layer Spherical Space Frame Structure with Triangular Network Pattern (삼각형 네트워크를 갖는 단층 및 복층 구형 스페이스 프레임 구조물의 좌굴특성에 관한 비교 연구)

  • 이호상;정환목;권영환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.251-257
    • /
    • 1998
  • Spherical space frame structure with triangular network pattern, which has the various characteristics for the mechanic property, a funtional property, an aesthetic property and so on, has often been used as one of the most efficient space structures. It is expected that this type will be used widely in large-span structural roofs. But because this structure is made of network by combination of line elements there me many nodes therefore, the structure behavior is very complicated and there can be an overall collapse of structure by buckling phenomenon if the external force reaches a limitation. This kind of buckling is due to geometric shape, network pattern, the number of layer and so on, of structure. Therefore spherical space frame with triangle network pattern have attracted many designers and researchers attention all over the world. The number of layer of space frame is divided in to the simgle, double, multi layer. That is important element which is considered deeply in the beginning of structural design. The buckling characteristics of single-layer model and double-layer model for the spherical space frame structure with triangular network pattern are evaluated and the buckling loads of these types are compared with investigation their structural efficiency in this study.

  • PDF

Strain and deformation angle for a steel pipe elbow using image measurement system under in-plane cyclic loading

  • Kim, Sung-Wan;Choi, Hyoung-Suk;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.190-202
    • /
    • 2018
  • Maintaining the integrity of the major equipment in nuclear power plants is critical to the safety of the structures. In particular, the soundness of the piping is a critical matter that is directly linked to the safety of nuclear power plants. Currently, the limit state of the piping design standard is plastic collapse, and the actual pipe failure is leakage due to a penetration crack. Actual pipe failure, however, cannot be applied to the analysis of seismic fragility because it is difficult to quantify. This paper proposes methods of measuring the failure strain and deformation angle, which are necessary for evaluating the quantitative failure criteria of the steel pipe elbow using an image measurement system. Furthermore, the failure strain and deformation angle, which cannot be measured using the conventional sensors, were efficiently measured using the proposed methods.

Dynamic Stability Assessment of Pressure Hull in Deep Sea against Implosion Pressure Pulse (심해 환경 하에서 내파 충격파를 받는 내압 선체의 동적 좌굴 평가 기법)

  • Nho, In Sik;Cho, Sang Rai;Cho, Yoon Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.4
    • /
    • pp.198-206
    • /
    • 2020
  • In this study, the dynamic structural behavior of pressure vessels due to pressure pulse initiated by implosion of neighbouring airbacked equipments including Unmanned Underwater Vehicles (UUV), sensor system, and so on were dealt with for the structural design and safety assessment of pressure hulls of submarine. The dynamic buckling and collapse responses of pressure vessel in deep sea were investigated considering the effects of initial hydrostatic pressure and fluid-structure interactions. The governing equations for circular cylindrical shells were formulated theoretically assuming a relatively simple displacement fields and the derived nonlinear simultaneous ordinary differential equations were analysed by developed numerical solution algorithm. Finally, the introduced safety assessment procedures for the dynamic buckling behaviors of pressure hulls due to implosion pressure pulse were validated by comparing the theoretical analysis results with those of experiments for examples of simple cylinders.

Model Test of Reinforced Earth Retaining Walls (보강토옹벽에 대한 모형실험)

  • 진병익;유연길
    • Geotechnical Engineering
    • /
    • v.2 no.1
    • /
    • pp.45-54
    • /
    • 1986
  • An experimental study was carried out in the laboratory on a model of a reinforced earth retaining wall to provide the empirical data for the rational design and the construction methods on a reinforced earth retaining wall. Observed measurements included the variation of tension in the aluminium foil reinforcing strips was monitored by electrical resistance strain gauges pasted on its at different stages of construction. In addition, the lateral movement of the wall was measured by dial gauges and the mode of collapse of the wall was investigated. The measured values are discussed in comparison with the results of the existing studies of the reinforced earth retaining wall. A significant result of the experiments is that the variation of tension in reinforcing strips is non-linear with the maximum tension occuring close to wall face. Attachment of reinforcement to wall increases the stability against overturning.

  • PDF

Combining in-plane and out-of-plane behaviour of masonry infills in the seismic analysis of RC buildings

  • Manfredi, V.;Masi, A.
    • Earthquakes and Structures
    • /
    • v.6 no.5
    • /
    • pp.515-537
    • /
    • 2014
  • Current seismic codes (e.g. the NTC08 Italian code and the EC8 European code) adopt a performance-based approach for both the design of new buildings and the assessment of existing ones. Different limit states are considered by verifying structural members as well as non structural elements and facilities which have generally been neglected in practice. The key role of non structural elements on building performance has been shown by recent earthquakes (e.g. L'Aquila 2009) where, due to the extensive damage suffered by infills, partitions and ceilings, a lot of private and public buildings became unusable with consequent significant socio-economic effects. Furthermore, the collapse of infill panels, particularly in the case of out-of-plane failure, represented a serious source of risk to life safety. This paper puts forward an infill model capable of accounting for the effects arising from prior in-plane damage on the out-of-plane capacity of infill panels. It permits an assessment of the seismic performance of existing RC buildings with reference to both structural and non structural elements, as well as of their mutual interaction. The model is applied to a building type with RC framed structure designed only to vertical loads and representative of typical Italian buildings. The influence of infill on building performance and the role of the out-of-plane response on structural response are also discussed.

Socket Preservation Utilizing Modified Free Connective Tissue Graft for Primary Closure : Wing Graft (발치와 보전술식시 변형 유리 결체조직 이식술을 이용한 일차 페쇄술식 : 익이식술)

  • Min, Kyoung-Man;Han, Soo-Boo;Lee, Chul-Woo;Kim, Dong-Kyun;Leem, Sang-Hoon
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.3
    • /
    • pp.409-418
    • /
    • 1998
  • The socket preservation technique is very effective in preventing alveolar ridge collapse after tooth extraction. Many technigues have been proposed for the primary closure of the flap and we tested a new graft design, "wing graft", which is a modification of free connective tissue graft in this case report. With this technique, primary closure was achieved without shallowing the vestibule. Additionally some vertical ridge augmentation effect could be observed and therefore good esthetic and functional results were obtained from this technique even in the case where severe bone loss and gingival recession was present. Finally we observed good healing appearance in the donor site after 2weeks. The results from this report suggest that this "wing graft" can be used successfully as an adjunctive procedure with socket preservation technique.

  • PDF

An Experimental Study on Noise Characteristics of Propeller Cavitation Inception (프로펠러 캐비테이션의 초기발생과 소음특성에 대한 실험연구)

  • Lee, Phil-Ho;Ahn, Byoung-Kwon;Lee, Chang-Sup;Lee, Jung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Cavitation is the formation of vapour bubbles of a flowing liquid in a region where the pressure of the liquid falls below its vapor pressure. Various types of cavitations are generated on the propeller blades. As cavity bubbles passing the blade are forced to oscillate in size or shape and come to collapse, they cause very strong local acoustic waves in the fluid and radiate noise. Comparing the Sound Pressure Level(SPL) before and after cavitation, SPL increases 2dB per 1 knot increase in ship speed above the cavitation inception speed(CIS). Consequently, the CIS is an important criteria to design silent propellers. In this work, experimental measurements of radiated noise according to various types of cavitations from the model propeller are carried out in a large cavitation tunnel and their acoustical characteristics are extensively investigated.

An Experimental Study on the Explosive Spalling Properties of High Strength Concrete Structure Member (고강도 콘크리트 구조부재의 폭렬 특성에 관한 실험적 연구)

  • Kim, Heung-Youl;Jeon, Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.421-424
    • /
    • 2006
  • This study, in order for perceiving the mechanical attribute followed by the explosive spalling of high strength concrete material under high temperature and evaluating capacity of endurance of material, targets understanding capacity of endurance of material such as explosive spalling in high temperature, temperature by thickness of clothing, transformation extent, transformation speed and displacement, stocking the maximum load based on the Allowable Stress Design Method. As a result of experimenting the explosive spalling attribute of high strength concrete material, the one possibly causing serious damage is the 50 MPa concrete. In all aspects of 60 MPa concrete, explosive spalling happens. Especially, it is hazardous enough to reveal all the iron bar. All explosive spalling is intensively concentrated on the surface of concrete for the first $5{\sim}25$ minutes, which urges for the explosive spalling protection action. As a result of evaluating the structural safety by the transformation of high strength concrete, while beam assures the fire safety meeting regulation, 60 MPa shows the dramatic increase of transformation, which only counts 84% of safety. In a column, both the concrete exclusion and excessive explosive spalling are concentrated upper part of column, which brings about the dramatic transformation, so it only meets the 50% of safety regulation. Likewise, in 80, 100 MPa concrete which was never experimented considering the condition of domestic structural endurance stocking devices, the faster collapse is expected.

  • PDF

A TCP Performance Enhancement Scheme in Wireless Mesh Networks (무선 메쉬 네트워크에서 TCP 성능 향상 기법)

  • Lee, Hye-Rim;Moon, Il-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1139-1145
    • /
    • 2010
  • Wireless mesh network is similar to ad-hoc network, so when transferred to the data packet in the wireless environment, interfered factor arise. When TCP(Transport Control Protocol) was created, however as it was design based on wired link, wireless link made more transmission error than wired link. It is existent problem that TCP unfairness and congestion collapse over wireless mesh network. But packet losses due to transmission errors are more frequent. The cause of transmission error in wireless ad-hoc network may be inexactly regarded as indications of network congestion. And then, Congestion Control Algorithm was running by this situation causes the TCP performance degradation. In this paper, proposed TCP can adaptively regulate the congestion window through moving node in the Wireless Mesh Network. And it enhanced the performance.

Tensile Behavior and Fracture Properties of Ductile Hybrid FRP Reinforcing Bar for Concrete Reinforcement (콘크리트 보강용 고연성 하이브리드 FRP 보강근의 인장 및 파괴 특성)

  • Park, Chan-Gi;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.41-51
    • /
    • 2004
  • FRP re-bar in concrete structures could be used as a substitute of steel re-bars for that cases in which aggressive environment produce high steel corrosion, or lightweight is an important design factor, or transportation cost increase significantly with the weight of the materials. But FRP fibers have only linearly elastic stress-strain behavior; whereas, steel re-bar has linear elastic behavior up to the yield point followed by large plastic deformation and strain hardening. Thus, the current FRP re-bars are not suitable concrete reinforcement where a large amount of plastic deformation prior to collapse is required. The main objectives of this study in to evaluate the tensile behavior and the fracture mode of hybrid FRP re-bar. Fracture mode of hybrid FRP re-bar is unique. The only feature common to the failure of the hybrid FRP re-bars and the composite is the random fiber fracture and multilevel fracture of sleeve fibers, and the resin laceration behavior in both the sleeve and the core areas. Also, the result of the tensile and interlaminar shear stress test results of hybrid FRP re-bar can provide its excellent tensile strength-strain and interlaminar stress-strain behavior.