• Title/Summary/Keyword: collapse design

Search Result 703, Processing Time 0.026 seconds

Connection method on pre-installed bridge monitoring system for bridge structure safety network (교량시설물 안전관리 네트워크 구축을 위한 기존 시스템 연계방안 연구)

  • Park, Ki-Tae;Lee, Woo-Sang;Joo, Bong-Chul;Hwang, Yoon-Koog
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.469-472
    • /
    • 2008
  • In general, structures in service gradually lose original performance according to time due to initial defects in design and construction, or exposure to unfavorable external conditions such as repeated loading or deteriorating environment, and in extreme cases, may collapse in large disaster. Therefore, in order to maintain the serviceability of structures at optimal level, advanced structure measuring system which can inform optimal time point and method of maintenance is required in addition to accurate prediction of residual life the structure by periodic inspection. To guarantee the safety level of bridge structure and to prevent from disaster, the integration of safety network for bridge structures are needed. Therefore in this study, to enhance the effectiveness of safety network for bridge, the connection methodologies between safety network and pre-installed bridge monitoring system are investigated.

  • PDF

Optimization of Bumper Beam Section of Crashworthiness (충돌성능을 고려한 승용차 범퍼빔 단면의 최적화)

  • Kang, S.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.276-284
    • /
    • 1998
  • Optimum design of bumper beam is investigated using nonlinear CAE structural analysis techniques.In order to minimize its weight, while enhancing structural performances, bumper beam structural analyses were carried out to produce optimum section. Model is composed of bumper beam and stay. First, considering FMVSS safety standard, static strength and energy absorbing capability were estimated for several competitive bumpers through pendulum static analysis, and most promising section was chosen. Next, to ensure dynamic crashworthinesss performance for center pole impact was evaluated for the bumper beam with chosen section through pendulum static analysis, referring to DHS bumper dynamic impact standard. Finally, 2.5 mph bumper beam was designed and its structural performance was estimated. Through this investigation, an optimized bumper beam section with less weight of 20% while maintaining almost equal carshworthiness, compared with a conventional bumper beam section which proved its impact crashworthiness by experiments, was developed.

  • PDF

Punching Shear Strength and Behavior of CFT Column to RC Flat Plate connections (CFT기둥-RC 무량판 접합부의 펀칭전단강도 및 거동)

  • Lee, Cheol-Ho;Kim, Jin-Won;Lee, Seung-Dong;Ahn, Jae-Kwon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.168-179
    • /
    • 2006
  • This paper summarizes full-scale test results on CFT column-to-flat plate connections subjected to gravity loading. CFT construction has gained wide acceptance in a relatively short time in domestic building construction practice due to its various structural and construction advantages. However, efficient details for CFT column to flat plate connections have not been proposed yet. Based on the strategies that maximize economical field construction, several connecting schemes were proposed and tested. Test results showed that the proposed connections can exhibit punching shear strength and connection stiffness exceeding those of R/C flat plate counterparts. A semi-analytical procedure is presented to model the behavior of CFT column-to-flat plate connections. The five parameters to model elastic to post-punching catenary action range are calibrated based on the limited test data of this study. The application of the proposed modeling procedure to progressive collapse prevention design is also illustrated.

  • PDF

Identifying stiffness irregularity in buildings using fundamental lateral mode shape

  • Vijayanarayanan, A.R.;Goswami, Rupen;Murty, C.V.R.
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.437-448
    • /
    • 2017
  • Soft or extreme soft storeys in multi-storied buildings cause localized damage (and even collapse) during strong earthquake shaking. The presence of such soft or extremely soft storey is identified through provisions of vertical stiffness irregularity in seismic design codes. Identification of the irregularity in a building requires estimation of lateral translational stiffness of each storey. Estimation of lateral translational stiffness can be an arduous task. A simple procedure is presented to estimate storey stiffness using only properties of fundamental lateral translational mode of oscillation (namely natural period and associated mode shape), which are readily available to designers at the end of analysis stage. In addition, simplified analytical expressions are provided towards identifying stiffness irregularity. Results of linear elastic time-history analyses indicate that the proposed procedure captures the irregularity in storey stiffness in both low- and mid-rise buildings.

Earthquake safety assessment of an arch dam using an anisotropic damage model for mass concrete

  • Xue, Xinhua;Yang, Xingguo
    • Computers and Concrete
    • /
    • v.13 no.5
    • /
    • pp.633-648
    • /
    • 2014
  • The seismic safety of concrete dams is one of the important problems in the engineering due to the vast socio-economic disasters which may be caused by collapse of these infrastructures. The accuracy of the risk evaluation associated with these existing dams as well as the efficient design of future dams is highly dependent on a proper understanding of their behaviour due to earthquakes. This paper develops an anisotropic damage model for arch dam under strong earthquakes. The modified Drucker-Prager criterion is adopted as the failure criteria of the dynamic damage evolution of concrete. Some process fields and other necessary information for the safety evaluation are obtained. The numerical results show that the seismic behaviour of concrete dams can be satisfactorily predicted.

Study of Crush Strength of Aluminum Honeycomb for Shock Absorber of Lunar Lander (달착륙선 충격흡수장치용 알루미늄 허니콤의 Crush Strength에 관한 연구)

  • Kim, Shin;Lee, Hyuk-Hee;Kim, Hyun-Duk;Park, Jung-Sun;Im, Jae-Hyuk;Hwang, Do-Soon
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.3
    • /
    • pp.1-5
    • /
    • 2010
  • Understanding the crushing behaviour of aluminum honeycombs under dynamic loading is useful for crash simulations of vehicles and for design of impacting energy absorbers. In the study of honeycomb crushing under quasi-static, dynamic loading, the most important parameter is crush strength. Crush strength is indicated to energy absorption characteristic of aluminum honeycomb. In this study, Using Finite Element Analysis carried out crush strength of hexagonal aluminum honeycomb then the results was compared with Quasi-static test. Consequently, Crush strength is different in quasi-static loading and dynamic loading about 16%.

  • PDF

Conversation Assistive Technology for Maintaining Cognitive Health

  • Otake-Matsuura, Mihoko
    • Journal of Korean Gerontological Nursing
    • /
    • v.20 no.sup1
    • /
    • pp.154-159
    • /
    • 2018
  • Purpose: There is a need for artificial intelligence which nurtures human intelligence as the prevalence of dementia and collapse of intelligence of human beings has become a social problem. Purpose of this study is to develop intervention technologies for maintaining cognitive health of older adults. Methods: The method named the Coimagination Method (CM) was proposed and has been developed in order to achieve goal. Conversation assistive technologies have been developed and tested based on the method. Results: The state of the art of the group conversation support system, and regular series of group conversation sessions for full-years with insights for healthy older adults are described in detail. Participatory approach has been applied to the design process for simultaneous research and implementation of the service. Both participants and practitioners have been maintaining their cognitive health for independent living. Conclusion: Findings imply that there exist potentially preventive types of dementia and intervention should be applicable for such types. Ways of thinking and living are gently intervened through understanding of personal values and broadening minds, which lead to improved quality of life.

3D stability of shallow cavity roof with arbitrary profile under influence of pore water pressure

  • Luo, W.J.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.569-575
    • /
    • 2018
  • The stability of shallow cavities with an arbitrary profile is a difficult issue in geotechnical engineering. This paper investigates this problem on the basis of the upper bound theorem of limit analysis and the Hoek-Brown failure criterion. The influence of pore pressure is taken into consideration by regarding it as an external force acting on rock skeleton. An objective function is constructed by equating the internal energy dissipation to the external force work. Then the Lagrange variation approach is used to solve this function. The validity of the proposed method is demonstrated by comparing the analytical solutions with the published research. The relations between shallow and deep cavity are revealed as well. The detaching curve of cavity roof with elliptical profile is obtained. In order to facilitate the application of engineering practice, the numerical results are tabulated, which play an important role in tunnel design and stability analysis of roof. The influential factors on potential collapse are taken into consideration. From the results, the impact of various factors on the extent of detaching is seen intuitively.

High Performance Fiber Reinforced Cement Composites in Construction Field (건설분야의 섬유강화 시멘트 복합 신재료)

  • Hong, Geon-Ho;Kim, Ki-Soo;Han, Bog-Kyu
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.43-48
    • /
    • 2006
  • High performance fiber reinforced cement composites have better performances than traditional cement based materials, therefore, have been expected as new construction applications such as the materials for construction & bridge structure, repair and rehabilitation applications, anti-collapse applications, anti-noise applications etc. However, they have lots of the problems such as material design, fabrication method and structural analysis. Also, the most serious problems of High performance fiber reinforced cement composites have been expensive initial cost, lack of long-term exposure data. As a result, it is needed that the efforts for lowering the initial cost and accumulation of long-term exposure. There has been hardly assessment results of life cycle cost for HPFRCC in construction field, but some papers showed that total life cycle cost could be profitable if the initial cost could be reduced.

Probabilistic analysis of structural pounding considering soil-structure interaction

  • Naeej, Mojtaba;Amiri, Javad Vaseghi
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.289-304
    • /
    • 2022
  • During strong ground motions, adjacent structures with insufficient separation distances collide with each other causing considerable architectural and structural damage or collapse of the whole structure. Generally, existing design procedures for determining the separation distance between adjacent buildings subjected to structural pounding are based on approximations of the buildings' peak relative displacement. These procedures are based on unknown safety levels. This paper attempts to evaluate the influence of foundation flexibility on the structural seismic response by considering the variability in the system and uncertainties in the ground motion characteristics through comprehensive numerical simulations. Actually, the aim of this study is to evaluate the influence of foundation flexibility on probabilistic evaluation of structural pounding. A Hertz-damp pounding force model has been considered in order to effectively capture impact forces during collisions. In total, 5.25 million time-history analyses were performed over the adopted models using an ensemble of 25 ground motions as seismic input within OpenSees software. The results of the study indicate that the soil-structure interaction significantly influences the pounding-involved responses of adjacent structures during earthquakes and generally increases the pounding probability.