• 제목/요약/키워드: collapse design

검색결과 698건 처리시간 0.027초

On the progressive collapse resistant optimal seismic design of steel frames

  • Hadidi, Ali;Jasour, Ramin;Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • 제60권5호
    • /
    • pp.761-779
    • /
    • 2016
  • Design of safe structures with resistance to progressive collapse is of paramount importance in structural engineering. In this paper, an efficient optimization technique is used for optimal design of steel moment frames subjected to progressive collapse. Seismic design specifications of AISC-LRFD code together with progressive collapse provisions of UFC are considered as the optimization constraints. Linear static, nonlinear static and nonlinear dynamic analysis procedures of alternate path method of UFC are considered in design process. Three design examples are solved and the results are discussed. Results show that frames, which are designed solely considering the AISC-LRFD limitations, cannot resist progressive collapse, in terms of UFC requirements. Moreover, although the linear static analysis procedure needs the least computational cost with compared to the other two procedures, is the most conservative one and results in heaviest frame designs against progressive collapse. By comparing the results of this work with those reported in literature, it is also shown that the optimization technique used in this paper significantly reduces the required computational effort for design. In addition, the effect of the use of connections with high plastic rotational capacity is investigated, whose results show that lighter designs with resistance to progressive collapse can be obtained by using Side Plate connections in steel frames.

A Benchmark Study of Design Codes on Offshore Pipeline Collapse for Ultra-Deepwater

  • Choi Han-Suk
    • Journal of Ship and Ocean Technology
    • /
    • 제10권1호
    • /
    • pp.38-46
    • /
    • 2006
  • The objective of this paper is to summarize current ultra-deepwater (i.e., up to 3,500 meters water depth) pipeline mechanical design methodologies as part of the limit state design. The standard mechanical design for ultra-deepwater pipelines in the Gulf of Mexico (GOM) is based on API RP 1111. API code also has been used for deepwater projects in west Africa. DNV code OS-F101 was mostly used for deepwater projects in offshore Brazil and Europe. Some pipeline designs in the GOM have started to incorporate parts of the DNV design methodology. A discussion of failure under collapse only and combined loading (i.e. pressure + bending) is presented. The best design criteria are obtained from physical full-scale collapse testing. The comparison of the physical test data and collapse calculations using the DNV and API codes will be presented. It was found that the conservatism still exists in the collapse prediction for ultra-deepwater pipeline using modem design codes such as DNV OS-F101 and API RP 1111.

Design guides to resist progressive collapse for steel structures

  • Mirtaheri, M.;Zoghi, M. Abbasi
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.357-378
    • /
    • 2016
  • The progressive collapse phenomenon in structures has been interested by civil engineers and the building standards organizations. This is particularly true for the tall and special buildings ever since local collapse of the Ronan Point tower in UK in 1968. When initial or secondary defects of main load carrying elements, overloads or unpredicted loads occur in the structure, a local collapse may be arise that could be distributed through entire structure and cause global collapse. One is not able to prevent the reason of failure as well as the prevention of propagation of the collapse. Also, one is not able to predict the start point of collapse. Therefore we should generalize design guides to whole or the part of structure based on the risk analysis and use of load carrying elements removal scenario. There are some new guides and criteria for elements and connections to be designed to resist progressive collapse. In this paper, codes and recommendations by various researchers are presented, classified and compared for steel structures. Two current design methods are described in this paper and some retrofitting methods are summarized. Finally a steel building with special moment resistant frame is analyzed as a case study based on two standards guidelines. This includes consideration of codes recommendations. It is shown that progressive collapse potential of the building depends on the removal scenario selection and type of analysis. Different results are obtained based on two guidelines.

교각 강성과 교량의 붕괴기구 (Pier Stiffness and Bridge Collapse Mechanism)

  • 국승규
    • 한국전산구조공학회논문집
    • /
    • 제29권2호
    • /
    • pp.187-192
    • /
    • 2016
  • 일반설계에서 탄성거동을 전제로 구조물을 설계하는 것과 달리 내진설계는 구조물의 소성거동을 규명하고 조정하여 붕괴를 방지하는 것이 목적이다. 일반교량의 경우에 요구되는 붕괴방지수준은 교량의 특정한 구조부재의 소성거동으로 낙교를 방지하여 지진발생 이후에 긴급차량의 통과를 가능하게 하는 것이다. 이러한 소성거동은 연결부분 또는 교각기둥에 제한되고 각 경우에 적절한 조치가 요구된다. 도로교설계기준은 교각기둥에서 소성힌지를 형성하여 연성붕괴기구를 구성하는 설계방식과 함께 철근콘크리트 교각을 하부구조로 하는 교량을 대상으로 연결부분의 항복을 이용하여 취성붕괴기구를 구성하는 연성도 내진설계를 부록으로 제시하고 있다. 이 연구에서는 철근콘크리트 교각기둥과 강재받침으로 설계된 일반교량을 선정하고 연성붕괴기구와 취성붕괴기구를 모두 고려한 붕괴방지 설계절차 및 도로교설계기준에 요구되는 수정사항을 제안하였다.

Design of steel moment frames considering progressive collapse

  • Kim, Jinkoo;Park, Junhee
    • Steel and Composite Structures
    • /
    • 제8권1호
    • /
    • pp.85-98
    • /
    • 2008
  • In this study the progressive collapse potential of three- and nine-story special steel moment frames designed in accordance with current design code was evaluated by nonlinear static and dynamic analyses. It was observed that the model structures had high potential for progressive collapse when a first story column was suddenly removed. Then the size of beams required to satisfy the failure criteria for progressive collapse was obtained by the virtual work method; i.e., using the equilibrium of the external work done by gravity load due to loss of a column and the internal work done by plastic rotation of beams. According to the nonlinear dynamic analysis results, the model structures designed only for normal load turned out to have strong potential for progressive collapse whereas the structures designed by plastic design concept for progressive collapse satisfied the failure criterion recommended by the GSA guideline.

평면(平面) Frame의 최적소성설계(最適塑性設計) (Optimal Plastic Design of Planar Frames)

  • 임상전;황선희
    • 대한조선학회지
    • /
    • 제17권2호
    • /
    • pp.1-10
    • /
    • 1980
  • The optimal plastic design of framed structures has been treated as the minimum weight design while satisfying the limit equilibrium condition that the structure may not fail in any of the all possible collapse modes before the specified design ultimate load is reached. Conventional optimum frame designs assume that a continuous spectrum of member size is available. In fact, the vailable sections merely consist of a finite range of discrete member sizes. Optimum frame design using discrete sections has been performed by adopting the plastic collapse theory and using the Complex Method of Box. This study has presented an iterative approach to the optimal plastic design of plane structures that involves the performance of a series of minimum weight design where the limit equilibrium equation pertaining to the critical collapse mode is added to the constraint set for the next design. The critical collapse mode is found by the collapse load analysis that is formulated as a linear programming problem. This area of research is currently being studied. This study would be applied and extended to design the larger and more complex framed structures.

  • PDF

Rationally modeling collapse due to bending and external pressure in pipelines

  • Nogueira, Andre C.
    • Earthquakes and Structures
    • /
    • 제3권3_4호
    • /
    • pp.473-494
    • /
    • 2012
  • The capacity of pipelines to resist collapse under external pressure and bending moment is a major aspect of deepwater pipeline design. Existing design codes present interaction equations that quantify pipeline capacities under such loadings, although reasonably accurate, are based on empirical data fitting of the bending strain, and assumed simplistic interaction with external pressure collapse. The rational model for collapse of deepwater pipelines, which are relatively thick with a diameter-to-thickness ratio less than 40, provides a unique theoretical basis since it is derived from first principles such as force equilibrium and compatibility equations. This paper presents the rational model methodology and compares predicted results and recently published full scale experimental data on the subject. Predictive capabilities of the rational model are shown to be excellent. The methodology is extended for the problem of pipeline collapse under point load, longitudinal bending and external pressure. Due to its rational derivation and excellent prediction capabilities, it is recommended that design codes adopt the rational model methodology.

Progressive collapse resistance of low and mid-rise RC mercantile buildings subjected to a column failure

  • Demir, Aydin
    • Structural Engineering and Mechanics
    • /
    • 제83권4호
    • /
    • pp.563-576
    • /
    • 2022
  • This study aimed to evaluate the progressive collapse potential of buildings designed using conventional design codes for the merchant occupancy classification and subjected to a sudden column failure. For this purpose, three reinforced concrete buildings having different story numbers were designed according to the seismic design recommendations of TSCB-2019. Later on, the buildings were analyzed using the GSA-2016 and UFC 4-023-03 to observe their progressive collapse responses. Three columns were removed independently in the structures from different locations. Nonlinear dynamic analysis method for the alternate path direct design approach was implemented for the design evaluation. The plasticity of the structural members was simulated by using nonlinear fiber hinges. The moment, axial, and shear force interaction on the hinges was considered by the Modified Compression Field Theory. Moreover, an existing experimental study investigating the progressive collapse behavior of reinforced concrete structures was used to observe the validation of nonlinear fiber hinges and the applied analysis methodology. The study results deduce that a limited local collapse disproportionately more extensive than the initial failure was experienced on the buildings designed according to TSCB-2019. The mercantile structures designed according to current seismic codes require additional direct design considerations to improve their progressive collapse resistance against the risk of a sudden column loss.

Impact Collapse Characteristics of CF/Epoxy Composite Tubes for Light-Weights

  • Kim, Young-Nam;Hwang, Jae-Jung;Baek, Kyung-Yun;Cha, Cheon-Seok;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제17권1호
    • /
    • pp.48-56
    • /
    • 2003
  • This paper investigates the collapse characteristics of CF/Epoxy composite tubes subjected to axial loads as changing interlaminar number and outer ply orientation angle. The tubes are aften used for automobiles, aerospace vehicles, trains, ships, and elevators. We have performed static and dynamic impact collapse tests by a way of building impact test machine with vertical air compression. It is fanad that CF/Epoxy tube of the 6 interlaminar number (C-type) with 90$^{\circ}$ outer orientation angle and trigger absorbed more energy than the other tubes (A. B and D-types). Also collapse mode depended upon outer orientation angle of CF/Epoxy tubes and loading type as well; typical collapse modes of CF/Epoxy tubes are wedged, splayed and fragmentcl.

집중하중을 받는 Grillage의 소성 붕괴하중 산정 및 일반식 도출 (Formulation of General Equations for Plastic Collapse Loads of Grillages under a Lateral Point Load)

  • 홍기섭;김기성
    • 대한조선학회논문집
    • /
    • 제41권6호
    • /
    • pp.91-101
    • /
    • 2004
  • For the grillage which is common types of structures in marine and land-based structural system, the elastic response and design methods are usually applied. However, plastic analysis and design methods are considered Tn those structures to maintain the structural stability at the limit states. In grillage design, the central intersection point load may be used as a worst loading condition. However, a point load may often move around on the grid system. in such case, the worst load point would not necessarily be at the central point. To investigate the variation of plastic collapse load according to the location of moving load between intersections, the plastic collapse loads are obtained for the three types of grillages with simply-supported ends. From the result of each case, it is confirmed that the worst load point is located between intersections. General formulae related with plastic collapse loads for the three groups of grillages with simply-supported boundaries are derived. Those plastic collapse formulae for the grillages are applied to the design of pontoon deck, and optimum design procedure is illustrated. Consequently, general formulae for the plastic collapse of grillages derived from this study can be easily applied to the plastic analysis and optimum design of similar grillages.