• Title/Summary/Keyword: collapse accident

Search Result 120, Processing Time 0.034 seconds

A Study on the Bow Collapse of High-Speed Passenger Craft in Collision with Bridge Pier (고속 여객선의 교각 충돌에 대한 연구)

  • 신영식;박명규
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • During the last 10 years, the various type of high speed craft have been greatly developed, and since around of 1990 the large size of high speed passenger and/or cargo vessels are also introduced and took into the service in the various routes over the world. In a marine traffic way some bridge need to build across a rivers, cannals or a waterways. This one will be an obstruction and potential risk of collision in the way of high speed craft. Accordingly some of collision accident have been reported, which were caused by a lost control, wind and hydrodynamic forces, fog or human errors. In this paper a high speed craft having 40 m length is assumed to be collided with a circular type of bridge piers at right angle. The mode of deformation, penetration depth of collapse, impact forces, reduction of speed, loss of kinetic energy, and influence of scantlings, etc. have been calculated in each speed with a time variation to find a maximum values within a limit, and are graphically presented.

  • PDF

The Lessons Learned from the Collapse of the Large Scale Buildings-The Introduction of Dr. Corley's Presentation at the 2nd Professional Engineers National Conference- (대형건물의 붕괴사고에서 배운 교훈들-제2차 전국기술사대회에서 행한 Dr. Corley 간연의 소개-)

  • Baik, Ee-ho
    • Journal of the Korean Professional Engineers Association
    • /
    • v.41 no.6
    • /
    • pp.38-44
    • /
    • 2008
  • Dr. Corley had various experiences as an outstanding structural engineer. His experience as the chief investigator for the collapse of World Trade Center and Oklahoma city building was so much useful to the lecture. His presentation had covered 3 different collapsed buildings like Oklahoma city, Pentagon and World Trade Center. He had shown to the audiences 2 videos and 76 slides by power point. The learned lessons from his presentation were: 1. The appropriate Building Code is very important. 2. The sound details are very important for the structure to resist the extreme outer force. 3. The continuous diagnosis and maintenance of the structure is important. 4. The reasonable attitude of the government against the accident is important. 5. The professional engineer must take a main role as a guard for the safety of the people.

  • PDF

Cause Analysis of Cone Roof Tank Collapse during Plant Construction (플랜트 공사 중 발생한 Cone Roof Tank 붕괴 사고 원인 분석)

  • Kim, Seung-Han;Kim, Byung-Suk
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.3
    • /
    • pp.71-80
    • /
    • 2016
  • This study is on safety improvement measures through analysis of accident cases during plant storage tank construction. Storage tank is a general term for artificial ground facility constructed to store oil, water, gas, and other chemicals. Some companies have clustered storage tanks (tank farm). The construction methods vary according to the component and types of fluids. Because most of the construction procedures include lifting heavy weight materials using heavy construction equipment and are carried out at high places, storage tank construction contains more risk factors than normal aerial construction. Recently, major accidents such as storage tank collapse have occurred often, and cost many lives due to the characteristics of the structure. In this study we would like to analyze the cause of these accidents and propose measures to improve safety.

Study on the influence of flow blockage in severe accident scenario of CAP1400 reactor

  • Pengcheng Gao;Bin Zhang ;Jishen Li ;Fan Miao ;Shaowei Tang ;Sheng Cao;Hao Yang ;Jianqiang Shan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.999-1008
    • /
    • 2023
  • Deformed fuel rods can cause a partial blockage of the flow area in a subchannel. Such flow blockage will influence the core coolant flow and further the core heat transfer during the reflooding phase and subsequent severe accidents. Nevertheless, most of the system analysis codes simulate the accident process based on the assumed flow blockage ratio, resulting in inconsistencies between simulated results and actual conditions. This paper aims to study the influence of flow blockage in severe accident scenario of the CAP1400 reactor. First, the flow blockage model of ISAA code is improved based on the FRTMB module. Then, the ISAA-FRTMB coupling system is adopted to model and calculate the QUENCH-LOCA-0 experiment. The correctness and validity of the flow blockage model are verified by comparing the peak cladding temperature. Finally, the DVI Line-SBLOCA accident is induced to analyze the influence of flow blockage on subsequent CAP1400 reactor core heat transfer and core degradation. From the results of the DVI Line-SBLOCA accident analysis, it can be concluded that the blockage ratio is in the range of 40%-60%, and the position of severe blockage is the same as that of cladding rupture. The blockage reduces the circulation area of the core coolant, which in turn impacts the heat exchange between the core and the coolant, leading to the early failure and collapse of some core assemblies and accelerating the core degradation process.

Utilization of Drone LiDAR for Field Investigation of Facility Collapse Accident (붕괴사고 현장조사를 위한 드론 LiDAR 활용)

  • Yonghan Jung ;Eontaek Lim ;Jaewook Suk;Seul Koo;Seongsam Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.849-858
    • /
    • 2023
  • Investigating disaster sites such as earthquakes and landslides involves significant risks due to potential secondary disasters like facility collapse. In situations where direct access is challenging, there is a need to develop methods for safely acquiring high-precision 3D disaster information using light detection and ranging (LiDAR) equipped drone survey systems. In this study, the feasibility of using drone LiDAR in disaster scenarios was examined, focusing on the collapse accident at Jeongja Bridge in Bundang-gu, Seongnam City, in April 2023. High-density point clouds for the accident bridge were collected, and the bridge's 3D terrain information was reconstructed and compared to the measurement performance of 10 ground control points. The results showed horizontal and vertical root mean square error values of 0.032 m and 0.055 m, respectively. Additionally, when compared to a point cloud generated using ground LiDAR for the same target area, a vertical difference of approximately 0.08 m was observed, but overall shapes showed minimal discrepancies. Moreover, in terms of overall data acquisition and processing time, drone LiDAR was found to be more efficient than ground LiDAR. Therefore, the use of drone LiDAR in disaster sites with significant risks allows for safe and rapid onsite investigations.

Perception Difference Analysis between Manager and Field Worker about the Form work Collapse Accident (거푸집 붕괴재해에 대한 관리자와 작업자의 인식차이 분석)

  • Kang, Sung Won;Lee, Jun Heon;Park, Se Hwan;Kang, Ha Ram;Lee, Ki Seok;Kim, Baek-Joong;Shin, Yoon-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.179-187
    • /
    • 2021
  • In the past five years, form construction, which accounts for approximately 25% of the total construction period, has continued to occur without a significant decrease in the number of deaths, with the largest proportion of collapse accidents. Accordingly, this study analyzed the difference in perception between the manager and worker by a questionnaire survey on the degree of risk and safety management level regarding a mold collapse accident. The survey was conducted in three groups: safety manager, field worker, and field manager. The results of the survey were analyzed by an independent sample T-Test using the SPSS program. As a result, there was almost no difference in recognition between managers, but a significant difference in recognition between managers and workers. In addition, there was a difference in management perception between the administrator and worker, which clearly shows the difference in the position between the administrator who manages and supervises hazardous disaster factors and the worker who works directly in the field. Such differences in perception can be a factor that cannot be mitigated. Based on this study, more developed research can narrow the perception gap between managers and workers and be used as a basic material for disaster research.

Uncertainties impact on the major FOMs for severe accidents in CANDU 6 nuclear power plant

  • R.M. Nistor-Vlad;D. Dupleac;G.L. Pavel
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2670-2677
    • /
    • 2023
  • In the nuclear safety studies, a new trend refers to the evaluation of uncertainties as a mandatory component of best-estimate safety analysis which is a modern and technically consistent approach being known as BEPU (Best Estimate Plus Uncertainty). The major objectives of this study consist in performing a study of uncertainties/sensitivities of the major analysis results for a generic CANDU 6 Nuclear Power Plant during Station Blackout (SBO) progression to understand and characterize the sources of uncertainties and their effects on the key figure-of-merits (FOMs) predictions in severe accidents (SA). The FOMs of interest are hydrogen mass generation and event timings such as the first fuel channel failure time, beginning of the core disassembly time, core collapse time and calandria vessel failure time. The outcomes of the study, will allow an improvement of capabilities and expertise to perform uncertainty and sensitivity analysis with severe accident codes for CANDU 6 Nuclear Power Plant.

A Study on the Risk Reduction of Distribution Line through Analysis of Electric Shock Accident (감전재해 분석을 통한 배전선로의 위험성 저감에 관한 연구)

  • Byeon, Junghwan;Choi, Sang-won
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.14-20
    • /
    • 2018
  • In this study, we analyze the current status of major disasters in distribution works and propose safety measures through the distribution live-line work method and electric shock risk assessment. The result of analyzing the ratio of electric shocks to the occurrence of industrial accidents in the recent 13 years shows that the death rate is higher than other industries, especially the construction industry occupying most of the disaster, and it is higher than the collapse disaster. We analyze statistic data of 101 victims selected as core words of live work, distribution line, pole and 22.9 kV in the investigation report of major accident of electric shock fatal from 2001 to 2014. The safety measure was established through the risk assessment of the distribution method using the standard model of the risk assessment based on the results of electric shock analysis on the distribution line. In order to prevent the electric shock accident which is recently being discussed, the risk assessment procedure were carried out in the above-mentioned 22.9kV special high voltage live-line operation method. We derived the risk reduction plan for the distribution line from the results of the major accidents statistic and demonstration of the line works.

Development of Emergency Restoration Scenarios for Railway Accident using Analytic Network Process (네트워크분석적 의사결정기법을 이용한 철도사고 임시복구시나리오 개발)

  • Sung, Deok-Yong;Park, Yong-Gul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5D
    • /
    • pp.727-737
    • /
    • 2011
  • The emergency restoration scenarios for efficient railway accident management and restoration were developed. The emergency restoration procedures defined by the worst case of emergency restoration and the important events was proposed based on questionnaires from specialists and the result of survey. Via these studies, the railway accident in the tunnel could be the worst case among all railway accident types. Therefore, educations for a restoration team in confined area condition should be planned and performed to recover the worst case accident. In order for the emergency restoration, when a railway accident is occurred, the restoration should be performed in orders of handing collapse of facilities, burying track, and derailment of vehicle in tunnel based on the statistical analysis. The result of priorities were established by the period of restoration. The standard operation system for efficient railway accident management was developed by synthesizing the worst case for rapid emergency restoration, and important events for the standard operation procedures according to each emergency restoration type. Through this study, the restoration operation system of railway accident are recommended. This paper suggests to develop emergency restoration scenarios for the efficient railway accident management and recovery system. The study results will contribute not only for insuring punctuality, but also for minimizing delays from accidents. Therefore, emergency restoration scenarios will play a major role in the SOP for the damage limitation and the prevention of accident spread.

A Study on the Critical Safety Management Buildings and factors by Analyzing the Actual State of Building Safety Management (건축물 안전관리 실태분석을 통한 중점안전관리 대상 및 요소 설정에 관한 연구)

  • Kim, Eun-Hee
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.4
    • /
    • pp.37-44
    • /
    • 2019
  • According to the statistical surveys and studies, insufficient maintenance in the use of existing buildings caused fire and collapse accidents. In this respect, I analyzed the data managed by the current building maintenance and inspection system to find out the actual state of safety management and proposed two significant results. First, regarding the state of the buildings, the safety management status of the small-sized ones, where 20 years or more passed after construction, is the worst and a priority improvement plan is required. Second, there are eight deeply concerning factors for the fire incidents and collapse accidents of buildings. In the order of high risk, these factors are structural strength (seismic design), exterior wall finishing material, basement floor, interior finishing materials, other evacuation facilities, corridors stairs entrances, rooftop, fire partition. We need to have more special designs and management plans regarding high-risk factors as a system to prevent accidents in the building.