• Title/Summary/Keyword: cold-rolling

Search Result 404, Processing Time 0.026 seconds

Corrosion and Wear Properties of Cold Rolled 0.087% Gd-Lean Duplex Strainless Steels for Neutron Absorbing Material (중성자 흡수소재용 냉간 압연된 Gd-저합금 이상 스테인레스 강의 부식 및 마모성)

  • Baek, Yeol;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.123-123
    • /
    • 2015
  • 0.087 wt.% Gd-lean duplex stainless steels were inert arc-melted and cast in a mold. The micro-hardnesses of the rolling, transverse, short transverse directions were 258.5, 292.3, 314.7 HV, respectively. The 33% cold rolled specimen had the crystallographic texture that mainly (100) pole was concentrated to normal direction and (110) pole was concentrated in the center of normal and rolling directions. The corrosion potential and corrosion rate in artificial sea water were in the range of $105.6-221.6mV_{SHE}$, $0.59-1.06mA/cm^2$, respectively. The friction coefficient and wear loss of the 0.087 wt.% Gd-lean duplex stainless steels in artificial sea water were about 67% and 65% lower than in air, whereas, the wear efficiency was 22% higher. The corrosion and wear behaviors of the 0.087 wt.% Gd-lean duplex stainless steels significantly depended on the gadolinium phases.

  • PDF

Tension/Heat/Thermal Deformation Analysis of a Cold Coiled Strip in Coiling Process (냉연 판재의 권취공정에 있어서 장력/열/변형 해석)

  • 정영진;이규택;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.39-43
    • /
    • 2002
  • A new model for heat transfer and thermal deformation analysis according to strip mm in coiling process has been proposed. Finite difference analyses for heat transfer of cold rolled coil have been carried out under various coiling tensions and strip crown using the equivalent thermal conductivity for the radial direction of cold rolled coil which is a function of strip thickness, surface characteristics and compressive pressure. The compressive pressure is calculated from a equation expressed as a function of hoop stress and coil tension considering strip mm obtained by experiment. Finite element method for thermal deformation of cold rolled coil has been performed to investigate the effects of the strip crown, the coil tension and temperature. From these analyses, it is found that the axial inhomogeneity of thermal deformation is increased as the strip crown, compressive pressure, and temperature drop in cold coiled strip increase.

  • PDF

Development of New Back-Up Roll for Strip Shape Control (형상제어를 위한 새로운 보강롤의 개발)

  • Lee, Won-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.327-333
    • /
    • 2003
  • Most of shape defects in steel strip are originated from the structure of rolling mill itself. For instance, strip crown occurs when the work roll is deformed by the bending moment induced on roll chocks. To get rids of the shape defects, it is necessary to increase the stiffness of rolling mill. The structure change of back-up roll is one of alternative ways to increase the mill stiffness without facility revamping from 4 high mill to 6 high mill. In this research work, the new back-up roll was developed and can be used in any type of 4 high mill to reduce the strip shape defects. The developed back-up roll consists of sleeve, arbor and phase angle adjusting system for arbor. The circumference of arbor is specially machined to adapt the strip width change during rolling. The experimental cold rolling test was done to prove the effectiveness of newly developed back-up roll. The experimental rolling results show that the new back-up roll has more powerful performance in reducing the shape defects than conventional back-up roll. It was also found that the new back-up roll has higher stability for shape control. In addition to, the only sleeve surface needs to be reground and changed in most cases, so that the maintenance cost can be greatly reduced.

FEA of Pipe Rolling Process Using Planetary Rolling Mill for Stainless Steel (유성압연기를 사용한 스테인리스 강관 압연공정의 유한요소해석)

  • Lee, Jung-Kil;Kim, Kwan-Woo;Cho, Hae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.244-251
    • /
    • 2011
  • Pipe rolling process using the planetary rolling mill for AISI 304 stainless steel has been studied by using finite element method. Mannesmann method using three-roll is applied to this rolling process. Commonly, rolling process has started from the cold working and finished to the hot working. This rolling process has more advantage that make reduction of process and cost than existing extrusion process. This process includes various and complex process parameters. Each of the process parameters affects forming result. Therefore, all of the process parameters should be considered in FEA. In this study, possibility and productivity of forming pipe for AISI 304 stainless steel had been investigated. Also, preheating process and variations of rotation velocity and product thickness were considered in FEA. Rolling process for AISI 304 stainless steel pipe was successfully simulated and it should be useful to determine optimal rolling condition.

Effect of cold rolling on the microstructures of TiNi/6061Al smart composites. (TiNi/6061Al 지적 복합재료의 미세조직에 미치는 냉간압연의 영향.)

  • 박성기;신순기;이준희
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.127-130
    • /
    • 2002
  • The 2.5 vol% TiNi/6061Al composites were fabricated by permanent mold casting, and its microstructures and tensile test for the cold rolled composites with maximum 50% reduction ratio were investigated. In the case of TiNi fiber with 2mm interval in preform, the interface bonding of fabricated composites were good. EPMA analysis results were found the small amount of Mg, Si segregated interface of diffusion layer. Transverse section of TiNi fiber was decreased with increasing reduction ratio and 40% reduction ratio was observed microcrack from TiNi fiber. And the tensile strength of composites at 38% reduction ratio was 194MPa. In the case of over 38% reduction ratio, the decrease of the tensile strength was due to TiNi fiber rupture by excess working. The fracture mode was appeared brittle fracture with increasing reduction ratio

  • PDF

A Study on the Characteristics of Automatic Flatness Control System for Cold Rolling (냉각압연 가공용 자동 형상제어장치의 특성에 관한 연구)

  • Kim, Moon-Kyung;Jeon, Eon-Chan;Kim, Soon-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2901-2907
    • /
    • 1996
  • Flatness of cold rolled strip is vital to the quality of the product and productivity of the mill. Therefore, in recent year requirement for flatness control in strip rolling have become increasingly severe. The necessity for more accurate automatic gauge control and automatic flatness control(AFC) has increased by customer's requirement for cold rolled steel sheets with thinner gauge and better flatness quality. In this paper, the performance and functions of AFC system installed on the 4 hi-reversing mill has been investigated under actual conditions. The test results are as follows : The more strip thickness is thick, the smaller the I-value. The I-value is a strain measured by stressometer. Complex distributions of strip tension are controlled to remove not only a quarter buckle but also a simple center wave and edge wave. The defects caused by poor flatness have been drastically decreased. And a proper coolant temperature for work roll cooling system on the AFC system is about $50~55^{\circ}C$.

Assessment of fatigue damage in 5% chrome cold rolling work roll (5% 크롬 냉간 압연용 작업롤의 피로손상 평가에 대한 연구)

  • Kwak, G.J.;Kim, K.S.;Lee, S.W.;Yeo, W.K.;Park, Y.C.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.316-321
    • /
    • 2000
  • The role of fatigue on the surface damage of 5% chrome cold milling work roll is evaluated. Uniaxial and torsional fatigue tests are carried out, and the baseline data for fatigue life evaluation are established. An appropriate multiaxial fatigue parameter is developed from the fatigue data. Fatigue tests are also performed under compressive mean stresses, and a mean stress model is formulated. A computer program is developed to assess the interaction of fatigue and grinding of the roll. The fatigue damage is computed for selected servicing conditions. It is found that the fatigue damage can be an important issue when the effect of mean stress is ignored, however the fatigue damage is negligibly small when the effect of mean stress including the residual stresses currently used is fully accounted. The result indicates that spalling due to the growth of thermal shock cracks is more important than fatigue damage in roll surface failure.

  • PDF

The Effect of Alloy Elements on the Damping Capacity and Plasma Ion Nitriding Characteristic of Fe-Cr-Mn-X Alloys [I Damping Capacity] (Fe-Cr-Mn-X계 합금의 감쇠능 및 플라즈마이온질화 특성에 미치는 합금원소의 영향 [I 감쇠능])

  • Son, D.U.;Jeong, S.H.;Kim, J.H.;Lee, J.M.;Kim, I.S.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.70-75
    • /
    • 2005
  • The damping property of Fe-12Cr-22Mn-X alloys has been investigated to develop high damping and high strength alloy. Particularly, the effect of the phase of austenite, alpha and epsilon martensite, which constitute the structure of the alloys Fe-12Cr-22Mn-X alloys, on the damping capacity at room temperature has been investigated. Various fraction of these phases were formed depending on the alloy element and cold work degree. The damping capacity is strongly affected by ${\varepsilon}$ martensite while the other phase, such as ${\alpha}'$ martensite, actually exhibit little effect on damping capacity. In case of Fe-12Cr-22Mn-3Co alloy, the large volume fraction of ${\varepsilon}$ martensite formed at about 30% cold rolling, and in case of Fe-12Cr-22Mn-1Ti alloy, formed at about 20% cold rolling and showed the highest damping capacity. Damping capacity showed higher value in Fe-12Cr-22Mn-1Ti alloy than one in Fe-12Cr-22Mn-3Co alloy.

  • PDF