• 제목/요약/키워드: cold-induced gelation

검색결과 4건 처리시간 0.016초

냉각유도젤화에 의한 엽산 함유 분리유청단백 나노담체의 제조 (Preparation of Folic Acid-loaded WPI (Whey Protein Isolate) Nanoparticles by Cold-induced Gelation)

  • 김범근;이원재;오세종;김진만;박동준
    • 한국축산식품학회지
    • /
    • 제30권1호
    • /
    • pp.95-101
    • /
    • 2010
  • 냉각유도젤화(cold-induced gelation) 기술을 이용하여 제조한 엽산 함유 유청단백질 나노담체에 대하여 실험적 변수, 즉, 고분자의 종류, 분리유청단백 용액의 농도 및 pH, 수용액층(aqueous phase)과 유기용매층(organic phase)의 비율, 분리유청단백 용액의 열처리 온도 등에 따른 입도 및 용출 양상의 변화를 고찰하였다. 고분자의 경우 알긴산을 이용하였을 때 가장 작은 입도를 나타내었으며, kcarrageenan의 경우 가장 큰 입도를 나타내었다. 수용액층과 유기용매층의 비율의 경우 그 값이 감소할수록 낮은 평균입도를 나타내었다. 분리유청단백 용액의 농도는 1%, pH는 8.0, 열처리 온도는 $80^{\circ}C$일 때 가장 작은 입자경 (<330 nm)을 나타내었다. 용출시험 결과, pH 7.4에서 2시간 이내에 대부분의 포집된 엽산이 용출된 반면, pH 1.2에서는 6시간 이상 용출이 지연되는 것을 확인하였다. 이와 같은 결과는 냉각유도젤화에 의해 나노담체를 제조하는 경우 실험적 변수들이 나노담체의 특성에 큰 영향을 미치는 것을 의미한다.

Optimisation of Calcium Alginate and Microbial Transglutaminase Systems to form a Porcine Myofibrillar Protein Gel

  • Hong, Geun-Pyo;Chin, Koo-Bok
    • 한국축산식품학회지
    • /
    • 제29권5호
    • /
    • pp.590-598
    • /
    • 2009
  • The aim of this study was to model and optimize the calcium alginate (CA) and microbial transglutaminase (TG) systems to form a cold-set myofibrillar protein (MP) gel containing 0.1 M or 0.3 M NaCl using a response surface methodology. The gel strengths of cold-set and heat-induced MP gels, and cooking yields were measured. All measured parameters showed determination coefficients ($R^2$) above 0.7 without a lack-of-fit. The CA system had the best results with component ratios of 1.0:0.3:1.0 corresponding to sodium alginate, calcium carbonate and glucono-$\delta$-lactone, respectively, and was favourable at 0.1 M NaCl. In contrast, the TG system only had an effect on cold-set MP gelation at 0.3 M salt, and the optimal ratio of TG to sodium caseinate was 0.6:0.5. By combining the two systems at 0.3 M NaCl, an acceptable cold-set MP gel with an improved texture and high cooking yield could be formed. Therefore, these results indicated that the functionality of the cold-set MP gel could be enhanced by combining these two optimized gelling system.

Comparative study of thermal gelation properties and molecular forces of actomyosin extracted from normal and pale, soft and exudative-like chicken breast meat

  • Li, Ke;Liu, Jun-Ya;Fu, Lei;Zhao, Ying-Ying;Bai, Yan-Hong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권5호
    • /
    • pp.721-733
    • /
    • 2019
  • Objective: The objectives of this study were to investigate the thermal gelation properties and molecular forces of actomyosin extracted from two classes of chicken breast meat qualities (normal and pale, soft and exudative [PSE]-like) during heating process to further improve the understanding of the variations of functional properties between normal and PSE-like chicken breast meat. Methods: Actomyosin was extracted from normal and PSE-like chicken breast meat and the gel strength, water-holding capacity (WHC), protein loss, particle size and distribution, dynamic rheology and protein thermal stability were determined, then turbidity, active sulfhydryl group contents, hydrophobicity and molecular forces during thermal-induced gelling formation were comparatively studied. Results: Sodium dodecyl sulphate-polyacrylamide gel electrophoresis showed that protein profiles of actomyosin extracted from normal and PSE-like meat were not significantly different (p>0.05). Compared with normal actomyosin, PSE-like actomyosin had lower gel strength, WHC, particle size, less protein content involved in thermal gelation forming (p<0.05), and reduced onset temperature ($T_o$), thermal transition temperature ($T_d$), storage modulus (G') and loss modulus (G"). The turbidity, reactive sulfhydryl group of PSE-like actomyosin were higher when heated from $40^{\circ}C$ to $60^{\circ}C$. Further heating to $80^{\circ}C$ had lower transition from reactive sulfhydryl group into a disulfide bond and surface hydrophobicity. Molecular forces showed that hydrophobic interaction was the main force for heat-induced gel formation while both ionic and hydrogen bonds were different significantly between normal and PSE-like actomyosin (p<0.05). Conclusion: These changes in chemical groups and inter-molecular bonds affected protein-protein interaction and protein-water interaction and contributed to the inferior thermal gelation properties of PSE-like meat.

Evaluation of Salt, Microbial Transglutaminase and Calcium Alginate on Protein Solubility and Gel Characteristics of Porcine Myofibrillar Protein

  • Hong, Geun-Pyo;Chin, Koo-Bok
    • 한국축산식품학회지
    • /
    • 제30권5호
    • /
    • pp.746-754
    • /
    • 2010
  • Response surface methodology was adopted to model and optimize the effects of microbial transglutaminase (TG) and calcium alginate (CA) systems of various ratios on the gelation characteristics of porcine myofibrillar protein (MP) at various salt levels. The CA system consisting of sodium alginate (SA), calcium carbonate (CC) and glucono-$\delta$-lactone (GdL) showed no remarkable changes in the salt-soluble fraction, and only minor effects on electrostatic interactions were observed. Increasing CA concentration caused acid-induced hydrophobic interactions in MPs, resulting in increased MP gel strength. The TG system, containing TG and sodium caseinate (SC), induced cold-set MP gelation by formation of covalent bonding. The main advantage of the combined system was a higher cooking yield when the MP gel was heated. These results indicated that 0.7% TG combined with 0.8% CA system can form a viscoelastic MP gel, regardless of salt levels.