• Title/Summary/Keyword: cold rolled sheet

Search Result 152, Processing Time 0.019 seconds

A Study on Characteristics of Automatic Flatness Control System of Contact Type (접촉식 자동 형상제어 장치의 특성에 관한 연구)

  • Kim, Moon-kyung;Jeon, Eon-chan;Kim, Soon-kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.67-73
    • /
    • 1996
  • The necessity for more accurate automatic flatness control(AFC) system has increased of customers' requirement for cold rolled steel sheet. Therefore, many cold rolling mills replaced its AFC system with a measuring roll of the contact type form the non-contact type. In this paper. The performance of AFC system of contact type has been investigated under industrial conditions. It has two kinds of actuator: roll bender, spot cooling system. The test results are as follows: The more strip thickness is thick, the smaller the I value, and the more it is thin, the bigger the I value. And a complex distribution of strip tension was controlled, for example, not only a pocket wave but also a simple center wave and edge wave. Because the tension deviation is larger at acceler- ation speed and decelerationspeed than steady speed, AFC system of contact type is better to adopt over 50m/mim. AFC system reduces rapidly large flatness deviation. The maximum I value of strip has been decreased to 13 I, and sticker, defects caused by poor flatness, have been decreased about 60%.

  • PDF

Evaluation on Resistance Spot Weldability and Nugget Formation of Surface Roughness Treated Steel Sheet (표면조도 특성에 따른 저항 점 용접성 평가 및 너깃 형성 고찰)

  • Kim, Ki-Hong;Choi, Yung-Min;Kim, Young-Seok;Rhym, Young-Mok;Yu, Ji-Hun;Kang, Nam-Hyun;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.79-89
    • /
    • 2008
  • With the increased use of surface textured steel sheet in body-in-white assembly, resistance spot weldability of these steels is considered to be an important subject. This study evaluated nugget formation and weldability by measuring dynamic resistance with various weld pressure, current, and weld time for steel sheet with two different surface roughnesses. The surface roughness for T-H steel ($R_{a}=1.70\;{\mu}m$) was higher than that for T-L steel ($R_{a}=1.33\;{\mu}m$), and resulted in increased contact resistance and heating for T-H steel spot welding. Therefore, at low weld current and weld cycle ranges, the T-H steel showed better weldability over the T-L steel. The evaluations of weld interface showed that the fusion zone in the T-H steel sheet was continuous in contrast to discontinuous fusion zone for T-L steel sheet at the same welding conditions. A comparison of dynamic resistance and tensile-shear strength (TSS) between T-H and T-L steel sheet suggested that high surface roughness provided larger heating at early cycle of welding and larger TSS.

A study on weight reduction of bracket using CAE program (CAE 프로그램을 이용한 브래킷 경량화에 관한 연구)

  • Kang, Hyung-Suk;Han, Bong-Suk;Han, Yu-Jin;Choi, Doo-Sun;Kim, Tae-Min;Shin, Bong-Cheol;Song, Ki-Hyeok
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.25-30
    • /
    • 2018
  • Recently The automotive industry is trying to increase the energy efficiency by reducing the weight of the car body and engine components as a way to achieve high energy efficiency. In particular, the reduction of the weight of the vehicle through the weight reduction of the vehicle body has the advantage that the fuel consumption and the output can be improved. But at the same time, there is the disadvantage that the strength becomes weak due to the reduction of the material thickness. Therefore, in order to overcome these disadvantages, materials with high strength according to the unit thickness have been actively developed, and researches for applying them have also been increasing. In this study, we will investigate the application of cold rolled steel sheet, which is a lightweight material, to a horn bracket that secures a installed in an automobile engine room. The horn bracket secures the horn on the car engine and is bolted to the outer wall of the engine. The momentum is acted on the bracket due to the distance between the bolt fastening part and the car horn installed on the bracket end side. Therefore, the body part of the bracket is more likely to be destroyed by the influence of the continuous stress. In this paper, design optimization for weight reduction and strength enhancement was performed to solve this problem, and possibility of applying the rolled steel sheet material as lightweight material by tensile test and fabrication was confirmed.

Experimental Study on the Frictional Constraint of Draw Bead (드로오 비드의 마찰구속에 관한 실험적 연구)

  • 김영석;장래웅;최원집
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.658-666
    • /
    • 1992
  • In developing computer-aided design technology for optimization of stamping die design, it has been an important issue to treat the frictional constraint acting on the blank holder surface. The main goal of this work is to establish database of draw bead restraint force and clarify friction characteristic for various automotive sheet steels, which is essential in developing friction algorithm that can be used for CAD of stamping die design. Draw bead friction tester is used to evaluate the various parameters that affect the draw restraint force and the coefficient of friction for the cold rolled and the coated sheet steels such as drawing rate, lubricant type, surface property of material, etc.

Effects of Strain Annealing Grain Size on the Magnetic Properties of Extra-Low Carbon Steel (극저탄소강판의 자성에 미치는 변형소둔 결정립도의 영향)

  • An, S.K.;Jeong, W.S.;Park, J.U.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.4
    • /
    • pp.208-218
    • /
    • 2006
  • The effects of the grain size on the magnetic properties in extra-low carbon steel after strain annealing were investigated. Two kinds of sample were prepared. One is the annealed sheet, which was annealed at $670^{\circ}C$ and $850^{\circ}C$ for various time periods after cold rolling. The other is the strain annealed sheet, which was temper rolled by 0.4% and subsequently strain annealed at the temperature ranging between $670^{\circ}C$ and $850^{\circ}C$ for various time periods. The grains after strain annealing became more coarse than those after primary annealing. The grains were coarsened due to the strain induced grain boundary migration (SIGM). It was found that the permeability tended to be increased and coercivity tended to be decreased with the increase of grain size. The optimum magnetic properties was achieved after strain annealing at $850^{\circ}C$ for 30 minites. Under this condition, the coercivity was measured to be 0.6 and the permeability was measured up to be 13000.

Production of Laser Welded Tube for Automobile Bumper Beam from 60kgf/$\textrm{mm}^2$Grade Steel Sheet (60kgf/$\textrm{mm}^2$급 자동차 범퍼빔용 레이저 용접 튜브 제조기술 및 장치연구)

  • Seo, Jung;Lee, Je-Hoon;Kim, Jong-Soo;Kim, Jung-O;Kang, Hee-Sin;Lee, Moon-Yong;Jung, Byung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.136-144
    • /
    • 2004
  • Optimal process and system to produce the laser welded tube for one body formed bumper beam are studied. The calculated size of tube is a thickness of 1.4mm, diameter of 105.4mm and length of 2000mm. The tube is shaped from a cold rolled high strength steel sheet(tensile strength: 60kgf/$\textrm{mm}^2$ grade). Two roll bending method is the optimal tube shaping process compared to UO-bending, bending on press brake, multi-step continuous roll forming and 3 roll bending methods. Weld quality monitoring and seam tracking along the butt-joint lengthwise to the tube axis are also studied. The longitudinal butt-joint is welded by the $CO_2$ laser welding system equipped with a seam tracker and plasma sensor. The constructed $CO_2$laser tube welding system can be used for the precision seam tracking and the real-time monitoring of weld quality. Finally, the obtained laser welded tube can be used for one-body formed automobile bumper beam.

Effect of Initial Texture on the Evolution of Warm Rolling Texture and Microstructure in Aluminum Alloy Sheet (알루미늄 판재의 온간압연 집합조직과 미세조직에 미치는 초기 집합조직의 영향)

  • Kim H. D.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.138-141
    • /
    • 2001
  • The evolution of lectures and microstructure during the warm-rolling and subsequent annealing in aluminum 3004 alloy sheets was investigated by employing X-ray texture measurements and microstructure observations. Whereas the typical $\beta$-fiber orientations with the strong Bs-orientation $\{112\}<110>$ formed in the normally cold-rolled specimen, the warm-rolling at $250^{\circ}C$ led to the development of a strong through thickness texture gradient which was characterized by shear texture at the surface layer and rolling textures at the center layer After warm rolling, ultra-fine grains formed in the thickness layer with shear texture components. Upon recrystallization annealing, the $\{001\}<100>$ Cube-texture developed at the expense of normal rolling texture components the rise to the formation of corase recrystallized grains. However, in the layer with shear texture components the continuous recrystallization took place and the fine grain size persisted even after recrystallization annealing.

  • PDF

Effect of Deposit Conditions on Composition of Sn-Zn Alloy Deposits (Sn-Zn합금도금 조성에 미치는 도금조건의 영향)

  • 배대철;김현태;장삼규;조경목
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.6
    • /
    • pp.537-544
    • /
    • 2001
  • In the present study, tin-zinc alloys were coated on a cold-rolled steel sheet with variations of electrolyte concentration, additives quantity and current density employing the Hull cell and circulation cell simulator. With an addition of additives of 2m1/L, tin-zinc deposits containing 10 to 40 percent Zn revealed a good surface appearance with weak acidic electrolytes. The organic additives suppressed the Sn deposition rate and thus increased the zinc contents in tin-zinc coating layers. The zinc contents in the tin-zinc coating layers depended almost linearly on the concentrations of metal ions of tin and zinc. Temperature of the electrolyte affected the composition tin-zinc coating layer. However, the concentration of complexants revealed little effectiveness. The surface morphology of tin-zinc coating showed dense tin and zinc phases with fine equiaxed grains with the high current density.

  • PDF

A Study on the In-plane Displacement Measurement of Spot welded Joints by Electronic Speckle Pattern Interferometry Method (레이저 스패클 간섭법에 의한 점 용접부의 면내변위 측정에 관한연구)

  • 성백섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.48-53
    • /
    • 1997
  • Electronic Speckle Pattern Interferometry(ESPI) using the Model 95 Ar laserm, a video system and an image processor was applied to the in-plane displacement measurements. Unlike traditional strain gauges or moire method, ESPI method requires no special surface preparation or attachments and can be measured in-plane displacement with no contact and real time. In this experiment wpecimen was loaded in parallel with a loadcell. The specimen was the cold rolled sdteel sheet of 2mm thickness, which was attached strain gauges. The study provides an example of how ESPI have been used to measure strain displacement in this specimen. The results measured by ESPI have been used to measure strain displacement in this specimen. The results measured by ESPI have been used to measure strain displacement in this specimen. The results measured by ESPI compare with the data which was measured by strain gauge method in tensile testing.

  • PDF

Hardening of Steel Sheets with Orthotropy Axes Rotations and Kinematic Hardening

  • Hahm, Ju-Hee;Kim, Kwon-Hee;Yin, Jung-Je
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.91-97
    • /
    • 2000
  • Anisotropic work hardening of cold rolled low carbon steel sheets is studied. The experiments consist of two stage tensile prestraining and tensile tests. At the first prestraining, steel sheets are streteched along the rolling direction by 3% and 6% tensile strains. The second prestrains are at 0${\cric}$, 30${\cric}$, 60${\cric}$to the rolling directions by varying degrees. Tensile tests are performed on the specimens cut from the sheets after the two stage prestraining. A theoretical framework on anisotropic hardening is proposed which includes Hill's quadratic yield function, ziegler's kinematic hardening rule, and Kim and Yin's assumption on the rotation of orthotropy axes. The predicted variations of R-values with second stage tensile strain are compared with the experimental data.

  • PDF