• Title/Summary/Keyword: cold mill strip

Search Result 71, Processing Time 0.025 seconds

A study on the characteristics of hydraulic automatic gauge control system for a reversing cold mill (유압압하식 자동두께제어장치의 특성에 관한 연구)

  • Kim, Soon Kyung;Jeon, Eon Chan;Kim, Moon Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.3
    • /
    • pp.49-55
    • /
    • 1996
  • Recently, the necessity for more accurate automatic gauge control has increased of customers' requirement for cold rolled steel sheets with thinner gauge and better gauge quality. Therefore, many cold rolling mills replaced its electric screw down automatic gauge control system with a new hydraulic automatic gauge control system, to ensure closer gauge tolerance. In this paper, The performance of a hydraulic automatic gauge control system for cold rolling has been investigated under industrial conditions. It was investigated that variation of gauge deviation according to the final products thickness, cold rolling speed and pass number, in the actual rolling mill. As a result, it was found that the system enables strip thickness variation to be reduced substantially and caused by poor gauge deviation have been drastically decreased. The test results are as following. The more the exit steel strip thickness is thick, the smaller the aguge deviation rate is large, and the more it is thin, the large the gauge deviation rate is large. Because the gauge deviation is larger at accleration speed and deceleration speed than steady speed, so automatic gauge control system is better to adopt over 50m/min. automatic gauge control system reduces rapidly large thickness deviation.

  • PDF

Design of a robust gauge controller for a single-stand cold rolling mill (단일 스탠드 냉간 압연 공정을 위한 견실한 두께 제어기의 설계)

  • An, Hyeon-Sik;Yun, Tae-Ung;Kim, Gwang-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.134-141
    • /
    • 1996
  • In this paper, we formulate the mathematical model for a single-stand rolling mill and design control systems for the thickness control at the exit of roll stand and for the tension control of the strip in the process. We propose a thickness controller based on the Internal Model Control structure which can be an effective application when the frequency components of the thickness deviation of the entry strip are known and, show how it can be appropriately combined with BISRA AGC method for a precise thickness control while maintaining the robustness against the modeling error of the mill modulus. It is illustrated by simulations that the proposed thickness control method gives better performance than existing methods and has the robustness against the modeling error of the mill modulus as well.

  • PDF

Design of Hierarchical Classifier for Classifying Defects of Cold Mill Strip using Neural Networks (신경회로망을 이용한 냉연 표면흠 분류를 위한 계층적 분류기의 설계)

  • Kim, Kyoung-Min;Lyou, Kyoung;Jung, Woo-Yong;Park, Gwi-Tae;Park, Joong-Jo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.499-505
    • /
    • 1998
  • In developing an automated surface inspect algorithm, we have designed a hierarchical classifier using neural network. The defects which exist on the surface of cold mill strip have a scattering or singular distribution. We have considered three major problems, that is preprocessing, feature extraction and defect classification. In preprocessing, Top-hit transform, adaptive thresholding, thinning and noise rejection are used Especially, Top-hit transform using local minimax operation diminishes the effect of bad lighting. In feature extraction, geometric, moment, co-occurrence matrix, and histogram ratio features are calculated. The histogram ratio feature is taken from the gray-level image. For defect classification, we suggest a hierarchical structure of which nodes are multilayer neural network classifiers. The proposed algorithm reduced error rate by comparing to one-stage structure.

  • PDF

A Study on Development of Model for Prediction of Rolling Force in Tandem Cold Rolling Mill (연속냉간압연에서의 압하력 예측을 위한 모델 개발에 관한 연구)

  • 손준식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.491-496
    • /
    • 2000
  • In the tandem cold rolling mill, the quality is very important and requirements for thickness accuracy become more strict. Howerver, the mathematical model for prediction of rolling force was not considered an elastic deformation at the entry and delivery side of the contacted area between the worked roll and rolling strip so that where was so difficult to control of the thickness. To overcome this problem, the mathematical model included an elastic deformation of strip has been developed and applied to the field in order to predict the rolling force. The simulated results showed that the effect of elastic recovery should be included the model, even f the effect of elastic compression was not important.

  • PDF

냉연 강판의 폭방향 판두께 제어 기술

  • 배원형;박해두;최재찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.512-517
    • /
    • 1993
  • The cold rolled strip meets continuously rising demands on the less deviation of thickness at the width direction of their rolled products. Especially, the special interest has been to find the methods to reduce the edge drop which influences seriously on the yield losses and the quality of the rolled products. In this study, the influence of hot coils on the thickness profile of cold rolled strip was analyzed. For obtainint the tapered work roll shig\ft conditions, the thermal crown and the flattening between the work roll and the strip were calculated, and the main parameters which have mostly effects on the edge drop were simulated. Also the obtained conditions from the simulation were applied to Tandem Cold Rolling Mill to investigate the change of the edge drop and the crown ratio depending on the amount of work roll taper and the length of contact of taper. The results of the application led to better thickness profile than conventional one.

  • PDF

Design of Two-DOF Optimal Controller for Strip Gage and Tension Control of Cold Tandem Mills Using Reference Shaping Filter and Disturbance Observer (목표치 정형화 및 외란 관측기를 활용한 연속 냉간압연 시스템의 2-자유도 스트립 두께 및 장력 최적 제어기 설계)

  • Hong, Wan-Kee;Kang, Hyun-Seok;Hwang, I-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.237-244
    • /
    • 2012
  • This paper studies the design of a two-DOF optimal controller for the strip gauge-tension of cold tandem mill processes, that uses a reference shaping filter and a disturbance observer. First, a mathematical model of the strip gauge and tension system is constructed using the gauge meter equation and Hooke's law, respectively. Next, a two-DOF controller considering of a feedforward controller and a feedback controller is designed. The former is based on the reference shaping filter and the disturbance observer, and the latter is based on the ILQ optimal control algorithm. Finally, it is shown through a computer simulation that the proposed optimal controller is able to improve the strip gauge accuracy and the tension variation more than the conventional MV-AGC controller.

A Fuzzy Shape Control Method for the Stainless Steel at the Cold Rolling Process (스테인리스 냉연공정에서 퍼지 형상제어)

  • Hur, Yone-Gi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1062-1070
    • /
    • 2009
  • The strip shape for the stainless steel process has made an issue of the strip quality, and hence the shape control method is developed at the Sendzimir rolling mill (ZRM). ZRM is a stainless cold rolling mill and has actuators for the shape control. They are first intermediate rolls and top crown rolls, which are controlled horizontally and vertically, respectively. The shape control of the stainless steel rolling process has difficulty in obtaining the symmetrical shape. The objective of the shape control is to minimize the shape deviation and to maintain stable state, which keeps symmetrical shape pattern in the lateral direction. The method of the shape recognition employs a least squares method and neural network. The shape deviation is the difference between the target shape and actual shape and is controlled by the fuzzy shape control. The fuzzy shape control using operator's informative knowledge is proposed in this paper. The experiments are carried out online for various stainless materials and sizes. The productivity of the rolling process has increased from 9.0 to 9.4 tons per hour.

A Study on Coolant and Roughness Variation in the Cold Rolling (냉간압연 가공시 압연유와 조도변화에 관한 연구)

  • 전언찬;김순경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1149-1157
    • /
    • 1995
  • The research for variation of coolant film thickness and separating force has been investigated following the examination for friction profile of work roll and roughness change of strip surface in rolling mill producting actual commercial products. The obtained results are as follows ; (1) Coolant film thickness in cold rolling has been increased relative to the circumferential velocity of work roll, and formation of coolant films has decreased with the smaller diameter of work roll. (2) Separating force is related to the formation of coolant film, and large separating force is needed to the formation of coolant film but it is constant after formation of appropriate film. (3) Wear and roughness alleviation of work roll is larger in bottom-roll than in top-roll on cold surface is larger in the direction of width than in roll direction, and changes of roughness and strip surface hardness rarely occurred after 3 passes.

A Study on Improvement of Flatness Control for Aluminum Cold Rolling Mill

  • Kim, Tae-Young;Bill Kraeling
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.66.5-66
    • /
    • 2002
  • Flatness of strip at aluminum cold rolling is one of the important quality parameters of rolled products. The reasons for this are perhaps obvious: for many of the end uses, subsequent processing requires a flat product poor flatness on-line can lead to reduced running speeds and hence to lower production levels. Amongst the reasons for lower running speeds is the increased risk of strip breaks. The Alcan Ulsan plant developed an automatic flatness control system on conventional four high mills for a year. This system compose of three parts as Intel RMX 3.3 operating system, advanced techniques, and flatness error analysis system. Strip flatness be measured by air bearing roll, passing the s...

  • PDF

Finite Element Analysis of Edge Fracture of Electrical Steel Strip in Reversible Cold Rolling Mill (가역식 냉간 압연기에서 전기강판의 에지 파단에 관한 유한요소해석)

  • Byon, Sang Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1619-1625
    • /
    • 2012
  • An electrical steel strip is commonly used as a core material in all types of electric transformers and motors. It is produced by a cold rolling process. In this paper, a damage-mechanics-based approach that predicts the edge fracture of an electrical steel strip during cold rolling is presented. We adopted the normal tensile stress criterion and the fracture energy method as a damage initiation criterion and a damage evolution scheme, respectively. We employed finite element analysis (FEA) to simulate crack initiation and propagation at the initial notch located at the edges of the strip. The material constants required in FEA were experimentally obtained by tensile tests using a standard and a notched sheet-type specimen. The results reveal that the edge crack was initiated at the entrance of the roll bite and that it rapidly evolved at the exit. The evolution length of the edge crack increased as the length of the initial notch as well as the front tension reel force of the strip increased.